Un gas ideal es un gas teórico compuesto de un conjunto de partículas puntuales con desplazamiento aleatorio, que no interactúan entre sí. El concepto de gas ideal es útil porque el mismo se comporta según la ley de los gases ideales, una ecuación de estado simplificada, y que puede ser analizada mediante la mecánica estadística.
En condiciones normales tales como condiciones normales de presión y temperatura, la mayoría de los gases reales se comportan en forma cualitativa como un gas ideal. Muchos gases tales como el nitrógeno, oxígeno, hidrógeno, gases nobles, y algunos gases pesados tales como el dióxido de carbono pueden ser tratados como gases ideales dentro de una tolerancia razonable.[1] Generalmente, el alejamiento de las condiciones de gas ideal tiende a ser menor a mayores temperaturas y a menor densidad (o sea a menor presión),[1] ya que el trabajo realizado por las fuerzas intermoleculares es menos importante comparado con energía cinética de las partículas, y el tamaño de las moléculas es menos importante comparado con el espacio vacío entre ellas.
El modelo de gas ideal tiende a fallar a temperaturas menores o a presiones elevadas, donde las fuerzas intermoleculares y el tamaño intermolecular son importantes. También por lo general, el modelo de gas ideal no es apropiado para la mayoría de los gases pesados, tales como vapor de agua o muchos fluidos refrigerantes.[1] A ciertas temperaturas bajas y a alta presión, los gases reales sufren una transición de fase, tales como a un líquido o a un sólido. El modelo de un gas ideal, sin embargo, no describe o permite las transiciones de fase. Estos fenómenos deben ser modelados por ecuaciones de estado más complejas.
El modelo de gas ideal ha sido investigado tanto en el ámbito de la dinámica newtoniana (como por ejemplo en "teoría cinética") y en mecánica cuántica (como "partícula en una caja"). El modelo de gas ideal también ha sido utilizado para modelar el comportamiento de electrones dentro de un metal (en el modelo de Drude y en el modelo de electrón libre), y es uno de los modelos más importantes utilizados en la mecánica estadística.
Si se reduce la presión de un gas ideal en un proceso de estrangulamiento, la temperatura del gas no cambia. Si se reduce la presión de un gas real en un proceso de estrangulamiento, su temperatura disminuye o aumenta, dependiendo de si su coeficiente correspondiente al efecto Joule Thomson es positivo o negativo.