En matemáticas, en particular en álgebra lineal, una matriz cuadrada de orden se dice que es invertible, no singular, no degenerada o regular si existe otra matriz cuadrada de orden , llamada matriz inversa de y denotada por si , donde es la matriz identidad de orden y el producto utilizado es el producto de matrices usual.
Una matriz cuadrada no invertible se dice que es singular o degenerada. Una matriz es singular si y sólo si su determinante es nulo. La matriz singular se caracteriza porque su multiplicación por la matriz columna es igual a cero para algún no nulo. El conjunto de estos vectores (y al subespacio vectorial formado por ellos) se llamará ker (de kernel, núcleo en alemán), para una matriz invertible ker es el vector nulo.
La inversión de matrices es el proceso de encontrar la matriz inversa de una matriz dada.