En matemáticas, los polinomios de Gegenbauer o polinomios ultraesféricos C(α)
n(x) son polinomios ortogonales en el intervalo [−1,1] con respecto a la función de ponderación (1 − x2)α–1/2. Generalizan los polinomios de Legendre y los polinomios de Chebyshov; y son casos especiales de los polinomios de Jacobi. Llevan el nombre de Leopold Gegenbauer.