Tensor de curvatura

En geometría diferencial, el tensor de curvatura de Riemann, o simplemente tensor de curvatura o tensor de Riemann, supone una generalización del concepto de curvatura de Gauss, definido para superficies, a variedades de dimensiones arbitrarias. Representa una medida de la separación de la métrica de la variedad respecto de la métrica euclídea.

Fue introducido en 1862 por B. Riemann y desarrollado en 1869 por E. B. Christoffel como una forma de describir completamente la curvatura en cualquier número de dimensiones mediante un "pequeño monstruo": un tensor de tipo (1,3) representado generalmente por el símbolo . El valor de cualquier otra entidad que describa la curvatura de una variedad puede deducirse de este tensor. Tal es el caso del tensor de Ricci (un tensor de tipo (0,2)), de la curvatura escalar o de la curvatura seccional.

Aunque en 2 dimensiones la curvatura puede representarse por un escalar en cada punto (o tensor de orden cero), tal como hacía la curvatura de Gauss, la geometría de variedades de Riemann con dimensión mayor o igual que 3 es demasiado compleja como para describirla totalmente por un número en un punto dado. Así, en 3 dimensiones la curvatura puede representarse por un tensor de segundo orden (el tensor de Ricci). Sin embargo, para dimensiones superiores necesitaremos al menos un tensor de cuarto orden (el tensor de Riemann).

El tensor de curvatura tiene una influencia notable en la evolución de la separación de un conjunto de geodésicas inicialmente próximas, vía la ecuación de Hamilton-Jacobi. Da lugar a efectos observables de la curvatura en las fuerzas de marea que aparecen en relatividad general.