Base de Hilbert

Une base de Hilbert (du nom de David Hilbert), ou encore base hilbertienne, est une généralisation aux espaces hilbertiens ou seulement préhilbertiens de la notion classique de base orthonormale en algèbre linéaire, pour les espaces euclidiens (ou hermitiens dans le cas complexe), lesquels sont de dimension finie.

Comme dans le cas des bases habituelles, il s'agit de pouvoir décomposer n'importe quel vecteur de l'espace en somme de vecteurs colinéaires à ceux de la famille choisie. Cependant dans le cas d'une base de Hilbert, on ne peut pas (généralement) écrire une égalité entre le vecteur décomposé et une combinaison linéaire finie des vecteurs de la base : on doit généralement se contenter d'une série dont les termes sont colinéaires aux vecteurs de la base, et convergeant vers le vecteur à décomposer (la notion de convergence d'une série a ici un sens car un espace de Hilbert est en particulier un espace vectoriel normé).