Chirurgie (topologie)

Une opération chirurgicale sur une sphère

En mathématiques, et particulièrement en topologie géométrique, la chirurgie est une technique, introduite en 1961 par John Milnor[1], permettant de construire une variété à partir d'une autre de manière « contrôlée ». On parle de chirurgie parce que cela consiste à « couper » une partie de la première variété et à la remplacer par une partie d'une autre variété, en identifiant les frontières ; ces transformations sont étroitement liées à la notion de décomposition en anses. La chirurgie est un outil essentiel dans l'étude et la classification des variétés de dimension supérieure à 4.

Plus précisément, l'idée est de partir d'une variété qu'on connaît bien, et d'opérer chirurgicalement sur elle pour construire une variété ayant les propriétés que l'on souhaite, de telle sorte que les effets de ces opérations sur les groupes d'homologie, d'homotopie, ou sur d'autres invariants de la variété soient calculables.

La classification des sphères exotiques par Kervaire et Milnor[2] en 1963 amena à l'émergence de la chirurgie comme un outil majeur de la topologie en grande dimension.