↑(en) K Harrison et R. Grimm, « Groundwater-controlled valley networks and the decline of surface runoff on early Mars », Journal of Geophysical Research, vol. 110, (DOI10.1029/2005JE002455, Bibcode2005JGRE..11012S16H).
↑(en) A. Howard, Jeffrey M. Moore et Rossman P. Irwin, « An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits », Journal of Geophysical Research, vol. 110, (DOI10.1029/2005JE002459, Bibcode2005JGRE..11012S14H).
↑Glotch, T. et P. Christensen. 2005. Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history. J. Geophys. Res. 110. DOI10.1029/2004JE002389.
↑(en) Rossman P. Irwin, Alan D. Howard, Robert A. Craddock et Jeffrey M. Moore, « An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development », Journal of Geophysical Research, vol. 110, (DOI10.1029/2005JE002460, Bibcode2005JGRE..11012S15I).
↑(en) C. Fassett et III Head, « Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology », Icarus, vol. 198, , p. 37–56 (DOI10.1016/j.icarus.2008.06.016, Bibcode2008Icar..198...37F).
↑(en) T. Parker, S. M. Clifford et W. B. Banerdt, « Argyre Planitia and the Mars Global Hydrologic Cycle », Lunar and Planetary Science, vol. XXXI, , p. 2033 (Bibcode2000LPI....31.2033P, lire en ligne [PDF]).
↑(en) H. Heisinger et J. Head, « Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history », Planet. Space Sci., vol. 50, nos 10–11, , p. 939–981 (DOI10.1016/S0032-0633(02)00054-5, Bibcode2002P&SS...50..939H).
↑(en) C. Weitz et T. Parker, « New evidence that the Valles Marineris interior deposits formed in standing bodies of water », Lunar and Planetary Science, vol. XXXI, , p. 1693 (Bibcode2000LPI....31.1693W, lire en ligne [PDF]).
↑(en) JW Head, G Neukum, R Jaumann, H Hiesinger, E Hauber, M Carr, P Masson, B Foing et H Hoffmann, « Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars », Nature, vol. 434, no 7031, , p. 346–350 (PMID15772652, DOI10.1038/nature03359, Bibcode2005Natur.434..346H).
↑Head, J. et D. Marchant. 2006. Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30 - 50 N latitude band. Lunar. Planet. Sci. 37. Abstract 1127.
↑Head, J. et D. Marchant. 2006. Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems. Lunar. Planet. Sci. 37. Abstract 1128.
↑Head, J. et al., 2006, Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation, Geophys. Res. Lett. 33.
↑Garvin, J. et al., 2002. Lunar Planet. Sci: 33. Abstract # 1255.
↑Plaut, J. et al., 2008. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2290.pdf.
↑Holt, J. et al., 2008. Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2441.pdf.
↑(en) Nilton O. Rennó, Brent J. Bos, David Catling, Benton C. Clark, Line Drube, David Fisher, Walter Goetz, Stubbe F. Hviid et Horst Uwe Keller, « Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site », Journal of Geophysical Research, vol. 114, (DOI10.1029/2009JE003362, Bibcode2009JGRC..11400E03R).