Fractale

Exemple de figure fractale (détail de l'ensemble de Mandelbrot).
Exemple de figure fractale (détail de l'ensemble de Mandelbrot)
Ensemble de Julia en .

Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles.

C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « autosimilaire ».

Les fractales sont définies de manière paradoxale, un peu à l'image des poupées russes qui renferment une figurine plus ou moins identique à l'échelle près : les objets fractals peuvent être envisagés comme des structures gigognes en tout point – et pas seulement en un certain nombre de points. Cette conception hologigogne (gigogne en tout point) des fractales implique cette définition récursive : un objet fractal est un objet dont chaque élément est aussi un objet fractal (similaire).

De nombreux phénomènes naturels – comme le tracé des lignes de côtes ou l'aspect du chou romanesco – possèdent des formes fractales approximatives.