Hypersurface

En géométrie, une hypersurface est une généralisation du concept d'hyperplan, de courbe plane et de surface. Une hypersurface est une variété de dimension N - 1, qui est intégrée dans un espace de dimension N, généralement un espace euclidien ou un espace affine.

  • Dans une espace de dimension 3, une hypersurface est une surface
  • Dans une espace de dimension 2, une hypersurface est une ligne

Une hypersurface est souvent définie par une seule équation du type f(x1,x2,...xN)=0.


En géométrie différentielle, une hypersurface d'une variété différentielle de dimension N, est une sous-variété de codimension 1, c'est-à-dire de dimension N-1.