Lemme de Hensel

En mathématiques, le lemme de Hensel, est un résultat permettant de déduire l'existence d'une racine d'un polynôme à partir de l'existence d'une solution approchée. Il doit son nom au mathématicien du début du XXe siècle Kurt Hensel. Sa démonstration est analogue à celle de la méthode de Newton.

La notion d'anneau hensélien regroupe les anneaux dans lesquels le lemme de Hensel s'applique. Les exemples les plus usuels sont ℤp (l'anneau des entiers p-adiques, pour p un nombre premier) et k[[t]] (l'anneau des séries formelles sur un corps k) ou plus généralement, les anneaux de valuation discrète complets.