Rythme biologique

Un rythme biologique correspond « à la variation périodique ou cyclique d'une fonction spécifique d'un être vivant », qu'il soit d'origine physiologique ou biochimique.

On en distingue trois types : circadien, infradien et ultradien[1].

Ils jouent un rôle majeur dans le fonctionnement des organismes vivants, par exemple chez l'animal dans le cas des pulsations cardiaques, des mouvements de paupières ou respiratoires, des rythmes repas/digestion, des états alternés de veille et sommeil, des cycles de l'ovulation, des rythmes de floraison et fructification chez les plantes, ou de la fructification saisonnière des champignons, ou encore en termes de migration animales, changement saisonnier de couleur ou épaisseur de pelage, etc.

Ils sont dans ces cas principalement contrôlés par la mélatonine et les noyaux suprachiasmatiques, essentiellement sous l'effet de l'exposition à la lumière (pour certaines longueurs d'onde[2],[3],[4],[5] et à partir d'une certaine intensité[6],[7], heure[8] et durée[9], et selon le modèle des séquences d'exposition[10] ou la durée d'impulsions lumineuses[11]). Ces rythmes sont importants dans la synchronisation de nos comportements habituels (alimentation, sommeil, etc.)[12]. Une désynchronisation avec le rythme circadien peut être source de troubles divers (immunitaires, humeur, régulation de la température, cardiovasculaires, sommeil attention, mémoire, etc)[13],[14],[15], notamment chez les travailleurs de nuit[16]. Une exposition excessive à l'éclairage artificiel, de nuit, surtout dans certaines longueurs d'onde est donc une source de perturbation endocrinienne, une situation considérée par l'OMS et l'IARC, depuis , comme « potentiellement cancérigène » dans le cas du travail posté[17],[18]).

Différents types d'« oscillateurs moléculaires » existent, dont chez des champignons (ex. : Neurospora crassa). Un rythme circadien bactérien a été mis en évidence, et en grande partie expliqué, chez des bactéries photosynthétiques (cyanobactéries). Certaines cellules perçoivent la lumière, même chez un animal pathologiquement ou naturellement aveugle[19].

  1. « Rythme biologique - Définition », sur Journal des Femmes Santé (consulté le )
  2. Dkhissi-Benyahya O, Gronfier C, De Vanssay W, Flamant F, Cooper HM (2007) Modeling the role of mid-wavelength cones in circadian responses to light. Neuron 53: 677–687 doi:10.1016/j.neuron.2007.02.005
  3. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, et al. (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21: 6405–6412.
  4. Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88: 4502–4505. doi: 10.1210/jc.2003-030570
  5. Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol (Lond) 535: 261–267. doi: 10.1111/j.1469-7793.2001.t01-1-00261.x
  6. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler CA (2000) Sensitivity of the human circadian pacemaker to nocturnal light : melatonin phase resetting and suppression. J Physiol (Lond) 526 Pt 3: 695–702. doi: 10.1111/j.1469-7793.2000.00695.x
  7. Zeitzer JM, Khalsa SBS, Boivin DB, Duffy JF, Shanahan TL, et al. (2005) Temporal dynamics of late-night photic stimulation of the human circadian timing system. Am J Physiol Regul Integr Comp Physiol 289: R839–844 doi:10.1152/ajpregu.00232.2005
  8. Khalsa SBS, Jewett ME, Cajochen C, Czeisler CA (2003) A phase response curve to single bright light pulses in human subjects. J Physiol (Lond) 549: 945–952 doi:10.1113/jphysiol.2003.040477
  9. Chang A-M, Santhi N, Hilaire MS, Gronfier C, Bradstreet DS, et al. (2012) Human responses to bright light of different durations. J Physiol 590: 3103–3112 doi:10.1113/jphysiol.2011.226555
  10. Gronfier C, Wright KP Jr, Kronauer RE, Jewett ME, Czeisler CA (2004) Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am J Physiol Endocrinol Metab 287: E174–181 doi:10.1152/ajpendo.00385.2003
  11. Zeitzer JM, Ruby NF, Fisicaro RA, Heller HC (2011) Response of the human circadian system to millisecond flashes of light. PLoS ONE 6: e22078 doi:10.1371/journal.pone.0022078
  12. Dijk DJ, Duffy JF, Czeisler CA (2000) Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol Int 17: 285–311. doi: 10.1081/cbi-100101049
  13. Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15: 3526–3538.
  14. Wright KP Jr, Hull JT, Hughes RJ, Ronda JM, Czeisler CA (2006) Sleep and wakefulness out of phase with internal biological time impairs learning in humans. J Cogn Neurosci 18: 508–521 doi:10.1162/jocn.2006.18.4.508.
  15. Gronfier C, Wright KP, Kronauer RE, Czeisler CA (2007) Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci USA 104: 9081–9086 doi:10.1073/pnas.0702835104
  16. Weibel L, Spiegel K, Gronfier C, Follenius M, Brandenberger G (1997) Twenty-four-hour melatonin and core body temperature rhythms: their adaptation in night workers. Am J Physiol 272: R948–954
  17. Travail posté, OMS-IARC, 2007-2010, carcinogène probable
  18. Pr Yves Dauvilliers Impact de la lumière sur notre Santé, Présentation du Pr Dauvilliers, Unité du Sommeil, Département de Neurologie ; Centre Référence National Narcolepsie / Hypersomnies - INSERM U1061 Hôpital Gui de Chauliac, CHU Montpellier, voir page 19/22
  19. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415: 493 doi:10.1038/415493a