Solide de Johnson

La gyrobicoupole octogonale allongée (J37), un solide de Johnson.
Ce cube composé de 24 faces carrées n'est pas un solide de Johnson parce qu'il n'est pas strictement convexe (il a des angles diédraux égaux à zéro).
Cet exemple à 24 triangles n'est pas un solide de Johnson parce qu'il n'est pas convexe.

En géométrie, un solide de Johnson est un polyèdre strictement convexe dont chaque face est un polygone régulier et qui n'est pas isogonal (qui n'est donc ni un solide de Platon, ni un solide d'Archimède, ni un prisme ni un antiprisme). Il n'est pas nécessaire que chaque face soit un polygone identique, ou que les mêmes polygones se rejoignent autour de chaque sommet. Un exemple de solide de Johnson est la pyramide à base carrée avec des côtés triangulaires équilatéraux (J1) ; il possède une face carrée et quatre faces triangulaires.

Comme dans un solide strictement convexe au moins trois faces se rencontrent à chaque sommet, le total de leurs angles est moindre que 360 degrés. Puisqu'un polygone régulier possède des angles supérieurs à 60 degrés, on en déduit que cinq faces au plus se rencontrent à un sommet quelconque. La pyramide pentagonale (J2) est un exemple qui a un sommet de degré 5.

Bien qu'il n'existe pas de restriction évidente qu'un polygone régulier quelconque donné puisse être une face d'un solide de Johnson, il s'avère que les faces des solides de Johnson ont toujours 3, 4, 5, 6, 8 ou 10 côtés.

En 1966, Norman Johnson a publié une liste qui incluait les 92 solides, et leur donna leurs noms et leurs nombres. Il ne démontra pas qu'il n'en existait que 92, mais il conjectura qu'il n'y en avait pas d'autres. Victor Zalgaller (en) a démontré en 1969 que la liste de Johnson était complète. On utilise les noms et l'ordre donnés par Johnson, et on les note Jxx.

Des solides de Johnson, la gyrobicoupole octogonale allongée (J37) est le seul qui est de sommet uniforme : il existe quatre faces à chaque sommet, et leur arrangement est toujours le même : trois carrés et un triangle.