Autovettore e autovalore

In questa trasformazione lineare della Gioconda l'immagine è modificata ma l'asse centrale verticale rimane fisso. Il vettore blu ha cambiato lievemente direzione, mentre quello rosso no. Quindi il vettore rosso è un autovettore della trasformazione e quello blu no. Inoltre, poiché il vettore rosso non è stato né allungato, né compresso, né ribaltato, il suo autovalore è 1. Tutti i vettori sull'asse verticale sono multipli scalari del vettore rosso, e sono tutti autovettori: assieme all'origine, formano l'autospazio relativo all'autovalore 1.

In matematica, in particolare in algebra lineare, un autovettore di una funzione tra spazi vettoriali è un vettore non nullo la cui immagine è il vettore stesso moltiplicato per uno scalare detto autovalore.[1] Se la funzione è lineare, gli autovettori aventi in comune lo stesso autovalore, insieme con il vettore nullo, formano uno spazio vettoriale, detto autospazio.[2] La nozione di autovettore viene generalizzata dal concetto di vettore radicale o autovettore generalizzato.

I concetti di autovettore e autovalore sono utilizzati in molti settori della matematica e della fisica; il problema della ricerca degli autovalori di una funzione lineare corrisponde alla sua diagonalizzazione. Se un autovettore è una funzione, si parla di autofunzione; per esempio in meccanica classica è molto comune considerare la funzione esponenziale come autofunzione della derivata. Formalismi di questo tipo consentono di descrivere molti problemi relativi ad un sistema fisico: ad esempio, i modi di vibrazione di un corpo rigido o i livelli energetici degli orbitali atomici e molecolari sono associati ad autovettori (autostati) di funzioni (osservabili) che ne determinano la dinamica.

Il termine autovettore è stato tradotto dalla parola tedesca Eigenvektor, coniata da David Hilbert nel 1904. Eigen significa "proprio", "caratteristico". Analogamente il prefisso auto- usato nella versione italiana non è abbreviazione di "automatico", bensì è preso dal greco autós con significato "di sé stesso". Nella letteratura italiana si trova spesso l'autovettore indicato come vettore proprio, vettore caratteristico o vettore latente.

  1. ^ S. Lang, Pag. 220.
  2. ^ S. Lang, Pag. 221.