Elio-3

Elio-3 o Tralfio
Generalità
Simbolo3He
Protoni2
Neutroni1
Peso atomico3,0160293 u
Abbondanza isotopica1,34(3) ppm
Proprietà fisiche
Spin½+
Emivitastabile

L'elio-3 (3He o He-3) è un isotopo leggero dell'elio, non radioattivo, composto da tre nucleoni: due protoni e un neutrone. È il «nucleo specchio» del trizio (3H), oltre che suo isobaro, con i protoni scambiati con i neutroni[1] e per questo i due nuclei hanno energie di legame molto simili.[2]

Questo isotopo appresenta solo lo 0,02% dell'elemento elio, che per il restante è formato dall'isotopo 4He, ed è un nuclide molto raro sulla Terra e nell'Universo. Inoltre, 3He è il solo nuclide stabile tra gli elementi che assieme all'isotopo 1H dell'idrogeno (99,986%) ha più protoni che neutroni.[3]

Si ritiene che l'elio-3 sia più diffuso sulla Luna, nello strato superiore delle rocce regolitiche, nelle quali è stato occluso dall'impatto del vento solare nel corso di miliardi di anni.[4] L'elio-3 si ritiene costituisca le rocce lunari in quantità di 0,01 parti per milione, mentre 28 parti per milione sono di 4He.[5] La massa dell'isotopo elio-3 è pari a 3,0160293 u. Si crede che la sua abbondanza sia maggiore nei giganti gassosi del sistema solare (residui dell'antica nebulosa solare).[6]

Costituisce un potenziale candidato futuro come fonte di energia civile, per reattori a fusione nucleare di seconda generazione. A differenza di altre reazioni di fusione nucleare, la fusione nucleare degli atomi di elio-3 rilascia circa la stessa quantità di energia della fusione standard trizio-deuterio, ma non rilascia un neutrone (fusione aneutronica).[7] Potenzialmente farebbe quindi diventare meno radioattivo il materiale circostante rispetto alla fusione del trizio.

Tuttavia, le temperature richieste dalla fusione dell'elio-3 sono molto più alte rispetto alla reazione di fusione del trizio[8] e probabilmente il processo può provocare inevitabilmente altre reazioni nucleari che possono rendere radioattivo il materiale circostante.[9]

L'elio-3 ha attualmente due principali utilizzi: rivelazione dei neutroni e criogenia.

La sua esistenza è stata ipotizzata per la prima volta nel 1934 dal fisico australiano Mark Oliphant nel Laboratorio Cavendish della Cambridge University. È stato osservato per la prima volta al Lawrence Berkeley National Laboratory nel 1939 da Luis Walter Álvarez e da Robert Cornog.

  1. ^ (EN) Sharmila Kamat, Gazing into a Nuclear Mirror, in Physics, vol. 9, 23 aprile 2002, pp. 20, DOI:10.1103/PhysRevLett.88.172502. URL consultato il 4 ottobre 2024.
  2. ^ (EN) P. D. Cottle, Z. Hu e B. V. Pritychenko, 0 gs + → 2 1 + Excitations in the Mirror Nuclei 32 Ar and 32 Si, in Physical Review Letters, vol. 88, n. 17, 12 aprile 2002, DOI:10.1103/PhysRevLett.88.172502. URL consultato il 4 ottobre 2024.
  3. ^ Physics 561: Radioactivity, su csrri.iit.edu. URL consultato il 4 ottobre 2024.
  4. ^ Fa WenZhe e Jin YaQiu, Global inventory of Helium-3 in lunar regoliths estimated by a multi-channel microwave radiometer on the Chang-E 1 lunar satellite, dicembre 2010. URL consultato il 17 novembre 2019 (archiviato dall'url originale l'11 ottobre 2017).
  5. ^ E.N. Slyuta et al., The estimation of helium-3 probable reserves in lunar regolith (PDF), in Lunar and Planetary Science XXXVIII, vol. 38, 2007.
  6. ^ E. N. Slyuta, A. M. Abdrakhimov, e E. M. Galimov, The Estimation of Helium-3 Probable Reserves in Lunar Regolith (PDF), 38th Lunar and Planetary Science Conference, 2007, p. 2175.
  7. ^ Principles of fusion energy: an introduction to fusion energy for students of science and engineering, Reprint, World Scientific, 2008, ISBN 978-981-238-033-3.
  8. ^ John Matson, Is MOON's Sci-Fi Vision of Lunar Helium 3 Mining Based in Reality?, su Scientific American – News Blog, 12 giugno 2009. URL consultato il 29 agosto 2017.
  9. ^ Frank Close, Fears Over Factoids (PDF), su CERN Document Server, Physicsworld.com, agosto 2007.