Le equazioni di Maxwell[1] sono un sistema di quattro equazioni differenziali alle derivate parziali lineari che, insieme alla forza di Lorentz, descrivono le leggi fondamentali che governano l'interazione elettromagnetica.[2] Alla base dell'elettrodinamica classica, esprimono l'evoluzione temporale e i vincoli a cui è soggetto il campo elettromagnetico in relazione alle distribuzioni di carica e corrente elettrica da cui è generato.
Le equazioni raggruppano ed estendono le leggi dell'elettricità e del magnetismo note alla metà del XIX secolo, tra cui la legge di Gauss per il campo elettrico e la legge di Faraday. Tale sintesi fu compiuta da Maxwell che, aggiungendo la corrente di spostamento alla legge di Ampère, rese simmetriche le equazioni che descrivono il campo elettrico e il campo magnetico, rendendo visibile in questo modo come essi siano due manifestazioni della stessa entità, il campo elettromagnetico. In altri termini, le quattro equazioni mostrano come i campi elettrici dinamici, cioè variabili nel tempo, sono in grado di generare campi magnetici e viceversa, unificando così, a livello teorico e in maniera perfettamente simmetrica, l'elettricità con il magnetismo.
Maxwell osservò anche che le equazioni ammettono soluzioni ondulatorie, il che condusse alla scoperta delle onde elettromagnetiche e in particolare fu spiegata la natura della luce, fino ad allora oggetto di varie speculazioni teoriche. I campi elettromagnetici, introdotti inizialmente come entità matematica, acquistarono una loro propria realtà fisica potendo esistere indipendentemente dalle sorgenti che li hanno generati.