Insieme chiuso

I punti del piano cartesiano che soddisfano la relazione formano una circonferenza qui disegnata in blu avente il centro nell'origine degli assi cartesiani e raggio . I punti tali che sono disegnati in rosso. L'unione dei punti disegnati in rosso e di quelli in blu è un insieme chiuso, mentre la sola parte disegnata in rosso forma un insieme aperto.

In topologia, un insieme chiuso è un sottoinsieme di uno spazio topologico tale che il suo complementare è aperto, oppure, equivalentemente, un insieme è chiuso se contiene la sua frontiera. Intuitivamente se un insieme è chiuso vuol dire che il "bordo" dell'insieme appartiene all'insieme stesso.

Gli insiemi chiusi hanno quindi le seguenti proprietà, "complementari" a quelle degli insiemi aperti, valide in un qualsiasi spazio topologico :

  1. l'unione di un numero finito di chiusi è ancora un chiuso;
  2. l'intersezione di una collezione arbitraria di chiusi è ancora un chiuso;
  3. l'intero insieme e l'insieme vuoto sono chiusi.

Si possono usare queste proprietà come assiomi per definire una topologia su a partire dai chiusi, che coincide con quella generata nel modo usuale dalla famiglia degli aperti complementari.