La matematica pura è costituita dalle aree della matematica che si occupano dello studio di concetti matematici indipendentemente dalla possibilità che vi siano o meno delle applicazioni. A partire dal diciottesimo secolo, la matematica pura, inizialmente chiamata anche matematica speculativa,[1] ha iniziato ad essere riconosciuta come categoria a sé stante di attività matematiche, distanziandosi dalle ricerche matematiche nate per rispondere ai problemi di navigazione, astronomia, fisica, ingegneria e molte altre. Un'altra possibile definizione della matematica pura è semplicemente quella di matematica non necessariamente applicata.[2]
Essa consiste nello studio di concetti matematici indipendentemente dalla loro eventuale applicazione al di fuori della matematica. Questi concetti possono nascere da osservazioni fatte nel mondo fisico ed i suoi risultati possono anche rivelarsi successivamente utili per applicazioni pratiche, ma i matematici puri non sono principalmente motivati da queste applicazioni, quanto invece dalla sfida intellettuale e dalla bellezza estetica delle conseguenze logiche che si possono ottenere da principi generali.
Mentre la matematica pura esisteva già come attività dai tempi dell'antica Grecia, la sua definizione fu elaborata intorno al 1900,[3] dopo l'introduzione di teorie con proprietà controintuitive (come per esempio la geometria non euclidea e la teoria degli insiemi infiniti di Cantor), e la scoperta di paradossi apparenti (come l'esistenza di funzioni continue che non sono differenziabili in nessun punto e il paradosso di Russell). Questi fatti resero necessario una revisione del concetto di rigore matematico e dei fondamenti della matematica, con un uso sistematico del metodo assiomatico. Inoltre indusse molti matematici a vedere la matematica come un'attività autonoma, indipendente, distaccata dal mondo fisico, cioè "matematica pura".
Quasi tutte le teorie matematiche rimanevano tuttavia in qualche modo collegate ai problemi presenti nel mondo fisico o a teorie meno astratte. Inoltre, molte teorie matematiche che apparivano totalmente astratte furono successivamente usate in applicazioni pratiche, principalmente in fisica e informatica. Uno dei primi famosi esempi è la dimostrazione che la legge di gravitazione universale di Isaac Newton implicava che i pianeti si muovessero lungo orbite rappresentanti sezioni coniche, curve geometriche studiate già nell'antichità da Apollonio. Un altro esempio riguarda la fattorizzazione di grandi numeri interi che costituì la base della moderna crittografia RSA, largamente usata per proteggere le comunicazioni via internet.[4]
Allo stato presente la distinzione tra pura e matematica applicata è più un punto di vista filosofico o una preferenza di qualche matematico che una rigida divisione della matematica. In particolare non è insolito che alcuni membri di un dipartimento di matematica applicata si definiscano matematici puri.