In statistica e in econometria, il modello probit è un modello di regressione nonlineare utilizzato quando la variabile dipendente è di tipo dicotomico. L'obiettivo del modello è di stabilire la probabilità con cui un'osservazione può generare uno o l'altro valore della variabile dipendente; può inoltre essere utilizzato per classificare le osservazioni, in base alla caratteristiche di queste, in due categorie.[1]
Il modello è stato proposto per la prima volta da Chester Ittner Bliss nel 1934,[2] ampliato l'anno successivo da Ronald Fisher che introdusse un metodo iterativo per la stima dei parametri tramite il metodo della massima verosimiglianza.