Modello probit

In rosso tratteggiato è rappresentato il modello probit.

In statistica e in econometria, il modello probit è un modello di regressione nonlineare utilizzato quando la variabile dipendente è di tipo dicotomico. L'obiettivo del modello è di stabilire la probabilità con cui un'osservazione può generare uno o l'altro valore della variabile dipendente; può inoltre essere utilizzato per classificare le osservazioni, in base alla caratteristiche di queste, in due categorie.[1]
Il modello è stato proposto per la prima volta da Chester Ittner Bliss nel 1934,[2] ampliato l'anno successivo da Ronald Fisher che introdusse un metodo iterativo per la stima dei parametri tramite il metodo della massima verosimiglianza.

  1. ^ (EN) James H. Stock e Mark W. Watson, Regression with a Binary Dependent Variable, in Introduction to Econometrics, 3ª ed., Pearson, 2015, pp. 437-439, ISBN 978-1-292-07131-2.
  2. ^ Chester I. Bliss, THE METHOD OF PROBITS, in Science, vol. 79, 12 gennaio 1934, pp. 38-39, DOI:10.1126/science.79.2037.38, PMID 17813446. URL consultato il 20 novembre 2018.