Moto armonico

In fisica, il moto armonico è il particolare moto vario descritto da un oscillatore armonico, cioè un sistema meccanico che reagisce ad una perturbazione dell'equilibrio con una accelerazione di richiamo proporzionale allo spostamento subito . La costante di proporzionalità è sempre negativa e si può quindi intendere, come qualsiasi numero reale negativo, come l'opposto di un quadrato di un altro numero costante , detto pulsazione, così indicato in quanto dimensionalmente simile alla velocità angolare. Quindi, l'equazione del moto di un oscillatore armonico è:

A livello dinamico, una possibile causa è la forza di Hooke:

dove è una costante positiva (detta rigidezza o costante elastica) che risulta, tenendo conto del principio di proporzionalità di Newton, dalla relazione:

Se è la sola forza agente, il sistema è detto oscillatore armonico semplice (o naturale) con equazione del moto uguale a quella succitata: il moto armonico semplice presenta oscillazioni sinusoidali attorno al punto di equilibrio, con ampiezza e frequenza (detta naturale) costante.

Esempi meccanici di oscillatori armonici semplici sono il pendolo semplice (per piccoli angoli di oscillazione) e una massa vincolata a una molla. Tra gli esempi di sistemi analoghi, fuori dalla meccanica, vi sono i sistemi acustici vibranti, e gli oscillatori armonici elettrici tra cui i circuiti RLC.

Va ricordato che esistono altri tipi di oscillatori anarmonici o non lineari, tra cui riveste particolare importanza quello di Van der Pol.