Torio

Torio
   

90
Th
 
               
               
                                   
                                   
                                                               
                                                               
   

attinio ← torio → protoattinio

Aspetto
Aspetto dell'elemento
Aspetto dell'elemento
bianco argenteo
Linea spettrale
Linea spettrale dell'elemento
Linea spettrale dell'elemento
Generalità
Nome, simbolo, numero atomicotorio, Th, 90
Serieattinidi
Gruppo, periodo, blocco—, 7, f
Densità11724 kg/m³
Durezza3,0
Configurazione elettronica
Configurazione elettronica
Configurazione elettronica
Termine spettroscopico3F2
Proprietà atomiche
Peso atomico232,0381 u
Raggio atomico (calc.)179 pm
Raggio covalente206 ± 6 pm
Configurazione elettronica[Rn]6d27s2
e per livello energetico2, 8, 18, 32, 18, 10, 2
Stati di ossidazione4 (debolmente basico)
Struttura cristallinacubica a facce centrate
Proprietà fisiche
Stato della materiasolido
Punto di fusione2 115 K (1 842 °C)
Punto di ebollizione5 061 K (4 788 °C)
Volume molare1,98×10−5 /mol
Entalpia di vaporizzazione514 kJ/mol
Calore di fusione13,81 kJ/mol
Velocità del suono2490 m/s a 293,15 K
Altre proprietà
Numero CAS7440-29-1
Elettronegatività1,3 (scala di Pauling)
Calore specifico120 J/(kg·K)
Conducibilità elettrica6,53×106/m·Ω
Conducibilità termica54 W/(m·K)
Energia di prima ionizzazione587 kJ/mol
Energia di seconda ionizzazione1 110 kJ/mol
Energia di terza ionizzazione1 930 kJ/mol
Energia di quarta ionizzazione2 780 kJ/mol
Isotopi più stabili
isoNATDDMDEDP
226Thsintetico 30,6 mesiα222Ra
227Thsintetico 18,72 giorniα223Ra
228Thsintetico 1,9116 anniα5,520224Ra
229Thsintetico 7340 anniα5,168225Ra
230Thsintetico 75380 anniα4,770226Ra
231Thsintetico 25,5 oreβ0,39231Pa
232Th100% 1,405×1010 anniα4,083228Ra
233Thsintetico 21,83 minutiβ233Pa
234Thsintetico 24,1 giorniβ0,27234Pa
iso: isotopo
NA: abbondanza in natura
TD: tempo di dimezzamento
DM: modalità di decadimento
DE: energia di decadimento in MeV
DP: prodotto del decadimento

Il torio è l'elemento chimico di numero atomico 90 e il suo simbolo è Th. È un metallo attinoide radioattivo ed è uno degli unici due significativi elementi che si trovano ancora radioattivi naturalmente in grandi quantità come elemento primordiale (l'altro è l'uranio). Il torio è stato scoperto nel 1829 dal sacerdote e mineralogista amatoriale norvegese Morten Thrane Esmark e in seguito identificato dal chimico svedese Jöns Jacob Berzelius, che gli diede il nome di Thor, il dio norvegese del tuono.

Un atomo di torio possiede 90 protoni e quindi 90 elettroni, di cui quattro elettroni di valenza. È di colore argenteo e diventa nero se esposto all'aria, formando il diossido di torio. Il torio è debolmente radioattivo: tutti i suoi isotopi noti sono instabili. Il torio-232 (232Th), possiede 142 neutroni ed è l'isotopo più stabile di torio rappresentando quasi tutto il torio naturale. Il torio ha la più lunga emivita rispetto a tutti gli elementi significativamente radioattivi: 14,05 miliardi di anni; decade molto lentamente attraverso un decadimento alfa diventando radio-228 (228Ra) e terminando con il piombo-208 (208Pb) stabile. Si stima che il torio sia circa tre o quattro volte più abbondante dell'uranio nella crosta terrestre ed è principalmente raffinato dalle sabbie di monazite come un sottoprodotto di estrazione di metalli delle terre rare.

In passato, il torio veniva comunemente utilizzato come fonte di luce nelle reticelle Auer e come materiale per le leghe metalliche, tuttavia queste applicazioni diminuirono a causa delle preoccupazioni circa la sua radioattività. È comunque ancora ampiamente usato come elemento di lega per la realizzazione di elettrodi per la saldatura TIG (ad un tasso del 1-2% con il tungsteno). Rimane popolare anche come materiale per l'ottica di fascia alta e per la strumentazione scientifica; il torio e l'uranio sono gli unici elementi significativamente radioattivi le cui principali applicazioni commerciali non si basano sulla loro radioattività. Si prevede che il torio possa essere in grado di sostituire l'uranio come combustibile nucleare nei reattori, ma finora sono stati realizzati solo pochi reattori alimentati a torio .