Names | |
---|---|
IUPAC name
(E)-Stilbene[1]
| |
Preferred IUPAC name
1,1′-[(E)-Ethene-1,2-diyl]dibenzene[1] | |
Other names
Bibenzylidene
trans-α,β-Diphenylethylene (E)-1,2-Diphenylethylene ((1E)-2-Phenylvinyl)benzene trans-Stilbene [(E)-2-Phenylethenyl]benzene | |
Identifiers | |
3D model (JSmol)
|
|
1616740 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.002.817 |
EC Number |
|
4381 | |
PubChem CID
|
|
UNII | |
UN number | 3077 |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C14H12 | |
Molar mass | 180.250 g·mol−1 |
Appearance | Solid |
Density | 0.9707 g/cm3 |
Melting point | 122 to 125 °C (252 to 257 °F; 395 to 398 K) |
Boiling point | 305 to 307 °C (581 to 585 °F; 578 to 580 K) |
Practically insoluble | |
Hazards | |
NFPA 704 (fire diamond) | |
Flash point | > 112 °C (234 °F; 385 K) |
Safety data sheet (SDS) | External MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.
Stilbene was discovered in 1843 by the French chemist Auguste Laurent.[2] The name "stilbene" is derived from the Greek word στίλβω (stilbo), which means "I shine", on account of the lustrous appearance of the compound.[3]