10-cube

10-cube
Dekeract

Orthogonal projection
inside Petrie polygon
Orange vertices are doubled, and central yellow one has four
Type Regular 10-polytope e
Family hypercube
Schläfli symbol {4,38}
Coxeter-Dynkin diagram
9-faces 20 {4,37}
8-faces 180 {4,36}
7-faces 960 {4,35}
6-faces 3360 {4,34}
5-faces 8064 {4,33}
4-faces 13440 {4,3,3}
Cells 15360 {4,3}
Faces 11520 squares
Edges 5120 segments
Vertices 1024 points
Vertex figure 9-simplex
Petrie polygon icosagon
Coxeter group C10, [38,4]
Dual 10-orthoplex
Properties convex, Hanner polytope

In geometry, a 10-cube is a ten-dimensional hypercube. It has 1024 vertices, 5120 edges, 11520 square faces, 15360 cubic cells, 13440 tesseract 4-faces, 8064 5-cube 5-faces, 3360 6-cube 6-faces, 960 7-cube 7-faces, 180 8-cube 8-faces, and 20 9-cube 9-faces.

It can be named by its Schläfli symbol {4,38}, being composed of 3 9-cubes around each 8-face. It is sometimes called a dekeract, a portmanteau of tesseract (the 4-cube) and deka- for ten (dimensions) in Greek, It can also be called an icosaronnon or icosa-10-tope as a 10 dimensional polytope, constructed from 20 regular facets.

It is a part of an infinite family of polytopes, called hypercubes. The dual of a dekeract can be called a 10-orthoplex or decacross, and is a part of the infinite family of cross-polytopes.