This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (September 2022) |
10-cube Dekeract | |
---|---|
Orthogonal projection inside Petrie polygon Orange vertices are doubled, and central yellow one has four | |
Type | Regular 10-polytope e |
Family | hypercube |
Schläfli symbol | {4,38} |
Coxeter-Dynkin diagram | |
9-faces | 20 {4,37} |
8-faces | 180 {4,36} |
7-faces | 960 {4,35} |
6-faces | 3360 {4,34} |
5-faces | 8064 {4,33} |
4-faces | 13440 {4,3,3} |
Cells | 15360 {4,3} |
Faces | 11520 squares |
Edges | 5120 segments |
Vertices | 1024 points |
Vertex figure | 9-simplex |
Petrie polygon | icosagon |
Coxeter group | C10, [38,4] |
Dual | 10-orthoplex |
Properties | convex, Hanner polytope |
In geometry, a 10-cube is a ten-dimensional hypercube. It has 1024 vertices, 5120 edges, 11520 square faces, 15360 cubic cells, 13440 tesseract 4-faces, 8064 5-cube 5-faces, 3360 6-cube 6-faces, 960 7-cube 7-faces, 180 8-cube 8-faces, and 20 9-cube 9-faces.
It can be named by its Schläfli symbol {4,38}, being composed of 3 9-cubes around each 8-face. It is sometimes called a dekeract, a portmanteau of tesseract (the 4-cube) and deka- for ten (dimensions) in Greek, It can also be called an icosaronnon or icosa-10-tope as a 10 dimensional polytope, constructed from 20 regular facets.
It is a part of an infinite family of polytopes, called hypercubes. The dual of a dekeract can be called a 10-orthoplex or decacross, and is a part of the infinite family of cross-polytopes.