This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Eliminate explanatory footnotes. Screen readers can put these at the end of the article, which is confusingly out of context. Merge into main prose or drop where content is already covered by a linked article. (May 2024) |
16-cell (4-orthoplex) | |
---|---|
Type | Convex regular 4-polytope 4-orthoplex 4-demicube |
Schläfli symbol | {3,3,4} |
Coxeter diagram | |
Cells | 16 {3,3} |
Faces | 32 {3} |
Edges | 24 |
Vertices | 8 |
Vertex figure | Octahedron |
Petrie polygon | octagon |
Coxeter group | B4, [3,3,4], order 384 D4, order 192 |
Dual | Tesseract |
Properties | convex, isogonal, isotoxal, isohedral, regular, Hanner polytope |
Uniform index | 12 |
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,3,4}. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century.[1] It is also called C16, hexadecachoron,[2] or hexdecahedroid [sic?] .[3]
It is the 4-dimesional member of an infinite family of polytopes called cross-polytopes, orthoplexes, or hyperoctahedrons which are analogous to the octahedron in three dimensions. It is Coxeter's polytope.[4] The dual polytope is the tesseract (4-cube), which it can be combined with to form a compound figure. The cells of the 16-cell are dual to the 16 vertices of the tesseract.