3-7 kisrhombille

3-7 kisrhombille
TypeDual semiregular hyperbolic tiling
FacesRight triangle
EdgesInfinite
VerticesInfinite
Coxeter diagram
Symmetry group[7,3], (*732)
Rotation group[7,3]+, (732)
Dual polyhedronTruncated triheptagonal tiling
Face configurationV4.6.14
Propertiesface-transitive

In geometry, the 3-7 kisrhombille tiling is a semiregular dual tiling of the hyperbolic plane. It is constructed by congruent right triangles with 4, 6, and 14 triangles meeting at each vertex.

The image shows a Poincaré disk model projection of the hyperbolic plane.

It is labeled V4.6.14 because each right triangle face has three types of vertices: one with 4 triangles, one with 6 triangles, and one with 14 triangles. It is the dual tessellation of the truncated triheptagonal tiling which has one square and one heptagon and one tetrakaidecagon at each vertex.