6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | {35} |
Coxeter diagrams | |
Elements |
f5 = 7, f4 = 21, C = 35, F = 35, E = 21, V = 7 |
Coxeter group | A6, [35], order 5040 |
Bowers name and (acronym) |
Heptapeton (hop) |
Vertex figure | 5-simplex |
Circumradius | 0.654654[1] |
Properties | convex, isogonal self-dual |
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°.