704 Interamnia

704 Interamnia
Discovery
Discovered byVincenzo Cerulli
Discovery date2 October 1910
Designations
(704) Interamnia
Pronunciation/ɪntərˈæmniə/[1]
Named after
Teramo
1910 KU; 1952 MW
Main belt
AdjectivesInteramnian /ɪntərˈæmniən/[1]
Orbital characteristics[2]
Epoch July 01, 2021
(JD 2459396.5, heliocentric)
Uncertainty parameter 0
Observation arc110.8 yr
Aphelion3.53 AU (528 Gm)
Perihelion2.58 AU (386 Gm)
3.056 AU (457.2 Gm)
Eccentricity0.155
5.34 yr (1951 d)
16.92 km/s[citation needed]
248°
0° 11m 4.2s / day
Inclination17.31°
280.3°
94.8°
Physical characteristics
Dimensionsc/a = 0.86±0.03[3]
362 × 348 × 310 ± 8 km[4]
332±5 km[3]
332±6 km (volume equivalent)[4]
Mass(35±5)×1018 kg[3]
(38±13)×1018 kg[4]
Mean density
1.84±0.28 g/cm3[3]
2.0±0.7 g/cm3[4]
8.71 h[4]
62±5°
87±5°
0.067[3]
0.078±0.014 geometric (0.645±0.014 BV, 0.259±0.021 UB)[2]
F/B[2]
9.9 to 13.0[5]
6.38[2]

704 Interamnia is a large F-type asteroid. With a mean diameter of around 330 kilometres, it is the fifth-largest asteroid, after Ceres, Vesta, Pallas and Hygiea. Its mean distance from the Sun is 3.067 AU. It was discovered on 2 October 1910 by Vincenzo Cerulli, and named after the Latin name for Teramo, Italy, where Cerulli worked. Its mass is probably between fifth and tenth highest in the asteroid belt, with a mass estimated to be 1.2% of the mass of the entire asteroid belt.[6] Observations by the Very Large Telescope's SPHERE imager in 2017–2019, combined with occultation results, indicate that the shape of Interamnia may be consistent with hydrostatic equilibrium for a body of its density with a rotational period of 7.6 hours. (Its current period is 8.7 hours.) This suggests that Interamnia may have formed as an equilibrium body, and that impacts changed its rotational period after it fully solidified.[4]

  1. ^ a b "interamnian". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. ^ a b c d JPL data Retrieved 2021-09-29
  3. ^ a b c d e P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy & Astrophysics 54, A56
  4. ^ a b c d e f Cite error: The named reference Hanus2019 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference bright2007 was invoked but never defined (see the help page).
  6. ^ Pitjeva, E. V. (2005). "High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants" (PDF). Solar System Research. 39 (3): 176–186. Bibcode:2005SoSyR..39..176P. doi:10.1007/s11208-005-0033-2. S2CID 120467483. Archived from the original (PDF) on 31 October 2008. 15 = 0.0124