ADM-Aeolus

ADM-Aeolus
Artist's view of ADM-Aeolus
NamesAtmospheric Dynamics Mission-Aeolus
Mission typeWeather satellite
OperatorESA / ESOC
COSPAR ID2018-066A Edit this at Wikidata
SATCAT no.43600
Mission duration5 years (achieved)
Spacecraft properties
ManufacturerAirbus Defence and Space
Launch mass1,366 kg (3,012 lb)
Dry mass1,200 kg (2,600 lb)
Dimensions1.74 × 1.9 × 2 m (5 ft 9 in × 6 ft 3 in × 6 ft 7 in)
Power2300 watts
Start of mission
Launch date22 August 2018, 21:20 UTC[1]
RocketVega
Launch siteCentre Spatial Guyanais, ELV
ContractorArianespace
End of mission
DisposalDeorbited
Last contactJuly 1, 2023
Decay dateJuly 28, 2023
Orbital parameters
Reference systemGeocentric orbit
RegimeSun-synchronous orbit
Altitude320 km (200 mi)[2]
Inclination97.0°
Transponders
BandS-band (TT&C support)
X-band (science data acquisition)
Bandwidth8 kbit/s download (S-band)
10 Mbit/s download (X-band)
2 kbit/s upload (S-band)
Instruments
Atmospheric Laser Doppler Instrument (ALADIN)
← Swarm

Aeolus, or, in full, Atmospheric Dynamics Mission-Aeolus (ADM-Aeolus), was an Earth observation satellite operated by the European Space Agency (ESA). It was built by Airbus Defence and Space, launched on 22 August 2018,[1] and operated until it was deorbited and re-entered the atmosphere over Antarctica on 28 July 2023.[3] ADM-Aeolus was the first satellite with equipment capable of performing global wind-component-profile observation and provided much-needed information to improve weather forecasting.[4] Aeolus was the first satellite capable of observing what the winds are doing on Earth, from the surface of the planet and into the stratosphere 30 km high.

The satellite was named after Aeolus, a god from the Greek mythology, the ruler of the winds.

  1. ^ a b "Aeolus Fuelled". ESA. Retrieved 5 August 2018.
  2. ^ ADM-Aeolus operations ESA Accessed 12 June 2018
  3. ^ "Aeolus: a historic end to a trailblazing mission". www.esa.int. Retrieved 31 July 2023.
  4. ^ Källén, Erland (2008). "Special issue with manuscripts related to ESA's Atmospheric Dynamics Mission/Aeolus". Tellus A: Dynamic Meteorology and Oceanography. 60 (2): 189–190. Bibcode:2008TellA..60..189K. doi:10.1111/j.1600-0870.2007.00296.x.