Acinetobacter baylyi

A. baylyi under 10x ocular lens and 100x objective lens with crystal violet stain.

Acinetobacter baylyi
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Pseudomonadales
Family: Moraxellaceae
Genus: Acinetobacter
Species:
A. baylyi
Binomial name
Acinetobacter baylyi
Carr et al. 2003

Acinetobacter baylyi is a bacterial species of the genus Acinetobacter. The species designation was given after the characterization of strains isolated from activated sludge in Victoria, Australia, in 2003.[1] A. baylyi is named after the late Dr. Ronald Bayly, an Australian microbiologist who contributed significantly to research on aromatic compound catabolism in diverse bacteria. The new species designation, in 2003, was found to apply to an already well-studied Acinetobacter strain known as ADP1 (previously known as BD413), a derivative of a soil isolate characterized in 1969.[2] For a long time, the taxonomy of Acinetobacter species was complicated by the lack of distinguishing traits. Strain ADP1 was long classified as Acinetobacter calcoaceticus and it was later referred to without a species name (Acinetobacter sp.) Research, particularly in the field of genetics and aromatic compound catabolism, established A. baylyi as a model organism.[3][4]

Acinetobacter baylyi is a nonmotile, gram-negative coccobacillus. It grows under strictly aerobic conditions, is catalase-positive, nitrate-negative, oxidase-negative, and non-fermentative.[5][6] The species is naturally competent, meaning the bacteria can take up exogenous DNA from their surroundings. If there is sufficient sequence identity between the transforming DNA and the genome of the recipient, the foreign DNA will be integrated in the chromosome by allelic replacement.[7] The processes of natural transformation and homologous recombination are incredibly efficient in A. baylyi compared to all studied microbes, thus contributing to its experimental utility.[8] There are numerous biotechnology applications for A. baylyi, such as producing alternative fuel sources and chemicals, acting as a host for biosensors to monitor the presence of important compounds, and aiding in degradation of pollutants.[9][10][11]

  1. ^ Carr, Emma L.; Kämpfer, Peter; Patel, Bharat K. C.; Gürtler, Volker; Seviour, Robert J. (April 9, 2003). "Seven novel species of Acinetobacter isolated from activated sludge". International Journal of Systematic and Evolutionary Microbiology. 53 (4): 953–963. doi:10.1099/ijs.0.02486-0. PMID 12892111.
  2. ^ Vaneechoutte, Mario; Young, David M.; Ornston, L. Nicholas; De Baere, Thierry; Nemec, Alexandr; Van Der Reijden, Tanny; Carr, Emma; Tjernberg, Ingela; Dijkshoorn, Lenie (January 2006). "Naturally Transformable Acinetobacter sp. Strain ADP1 Belongs to the Newly Described Species Acinetobacter baylyi". Applied and Environmental Microbiology. 72 (1): 932–936. Bibcode:2006ApEnM..72..932V. doi:10.1128/AEM.72.1.932-936.2006. ISSN 0099-2240. PMC 1352221. PMID 16391138.
  3. ^ Juni, Elliot (November 1972). "Interspecies Transformation of Acinetobacter : Genetic Evidence for a Ubiquitous Genus". Journal of Bacteriology. 112 (2): 917–931. doi:10.1128/jb.112.2.917-931.1972. ISSN 0021-9193. PMC 251504. PMID 4563985.
  4. ^ Young, David M.; Parke, Donna; Ornston, L. Nicholas (2005-10-01). "Opportunities for Genetic Investigation Afforded by Acinetobacter baylyi, A Nutritionally Versatile Bacterial Species That Is Highly Competent for Natural Transformation". Annual Review of Microbiology. 59 (1): 519–551. doi:10.1146/annurev.micro.59.051905.105823. ISSN 0066-4227. PMID 16153178.
  5. ^ "Acinetobacter baylyi Biofilm Formation Dependent Genes". Journal of Pure and Applied Microbiology. 2020-02-01. Retrieved 2024-02-15.
  6. ^ Talaiekhozani, Amirreza (2013). "Guidelines for Quick Application of Biochemical Tests to Identify Unknown Bacteria". SSRN Electronic Journal. doi:10.2139/ssrn.4101035. ISSN 1556-5068.
  7. ^ Elliott, Kathryn T.; Neidle, Ellen L. (April 9, 2011). "Acinetobacter baylyi ADP1: Transforming the choice of model organism". IUBMB Life. 63 (12): 1075–1080. doi:10.1002/iub.530. PMID 22034222.
  8. ^ Bedore, Stacy R.; Neidle, Ellen L.; Pardo, Isabel; Luo, Jin; Baugh, Alyssa C.; Duscent-Maitland, Chantel V.; Tumen-Velasquez, Melissa P.; Santala, Ville; Santala, Suvi (2023), "Natural transformation as a tool in Acinetobacter baylyi: Streamlined engineering and mutational analysis", Genome Engineering, Elsevier, pp. 207–234, doi:10.1016/bs.mim.2023.01.002, hdl:10261/350462, ISBN 978-0-12-823540-9, retrieved 2024-04-10
  9. ^ Santala, Suvi; Efimova, Elena; Kivinen, Virpi; Larjo, Antti; Aho, Tommi; Karp, Matti; Santala, Ville (2011). "Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering". Microbial Cell Factories. 10 (1): 36. doi:10.1186/1475-2859-10-36. ISSN 1475-2859. PMC 3112387. PMID 21592360.
  10. ^ Luo, Jin; Lehtinen, Tapio; Efimova, Elena; Santala, Ville; Santala, Suvi (2019-03-11). "Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules". Microbial Cell Factories. 18 (1): 48. doi:10.1186/s12934-019-1097-x. ISSN 1475-2859. PMC 6410514. PMID 30857542.
  11. ^ Gutnick, David L.; Bach, Horacio (2008). Gerischer, Ulrike (ed.). Acinetobacter molecular microbiology. Norfolk, UK: Caister Academic Press. pp. 241–253. ISBN 978-1-904455-20-2. OCLC 154685348.