Actin remodeling

Actin remodeling is the biochemical process that allows for the dynamic alterations of cellular organization. The remodeling of actin filaments occurs in a cyclic pattern on cell surfaces and exists as a fundamental aspect to cellular life. During the remodeling process, actin monomers polymerize in response to signaling cascades that stem from environmental cues.[1] The cell's signaling pathways cause actin to affect intracellular organization of the cytoskeleton and often consequently, the cell membrane. Again triggered by environmental conditions, actin filaments break back down into monomers and the cycle is completed. Actin-binding proteins (ABPs) aid in the transformation of actin filaments throughout the actin remodeling process.[1] These proteins account for the diverse structure and changes in shape of Eukaryotic cells. Despite its complexity, actin remodeling may result in complete cytoskeletal reorganization in under a minute.[2]

  1. ^ a b Thomas P. Stossel; Gabriel Fenteany; John H. Hartwig (2006). "Cell surface actin remodeling" (PDF). Journal of Cell Science. 119 (Pt 16): 3261–3264. doi:10.1242/jcs.02994. PMID 16899816. S2CID 30606964. Archived from the original (PDF) on 2010-06-18.
  2. ^ Amon; Berk; Bretscher; Kaiser; Krieger; Lodish; Ploegh; Scott (2013). Molecular Cell Biology (Seventh ed.). New York: W.H Freeman and Company. pp. 775–815. ISBN 978-1-4292-3413-9.