Active Format Description

In television technology, Active Format Description (AFD) is a standard set of codes that can be sent in the MPEG video stream or in the baseband SDI video signal that carries information about their aspect ratio and other active picture characteristics.[1] It has been used by television broadcasters to enable both 4:3 and 16:9 television sets to optimally present pictures transmitted in either format. It has also been used by broadcasters to dynamically control how down-conversion equipment formats widescreen 16:9 pictures for 4:3 displays.[2][3]

Standard AFD codes provide information to video devices about where in the coded picture the active video is and also the "protected area" which is the area that needs to be shown. Outside the protected area, edges at the sides or the top can be removed without the viewer missing anything significant. Video decoders and display devices can then use this information, together with knowledge of the display shape and user preferences, to choose a presentation mode.[4]

AFD can be used in the generation of Widescreen signaling, although MPEG alone contains enough information to generate this. AFDs are not part of the core MPEG standard; they were originally developed within the Digital TV Group in the UK and submitted to DVB as an extension, which has subsequently also been adopted by ATSC (with some changes). SMPTE has also adopted AFD for baseband SDI carriage as standard SMPTE 2016-1-2007, "Format for Active Format Description and Bar Data".

Active Format Description is occasionally incorrectly referred to as "Active Format Descriptor". There is no "descriptor" (descriptor has a specific meaning in ISO/IEC 13818-1, MPEG syntax). The AFD data is carried in the Video Layer of MPEG, ISO/IEC 13818-2. When carried in digital video, AFDs can be stored in the Video Index Information, in line 11 of the video.

By using AFDs broadcasters can also control the timing of Aspect Ratio switches more accurately than using MPEG signalling alone. This is because the MPEG signalling can only change with a new Group of Pictures in the sequence, which is typically around every 12 frames or half a second - this was not considered accurate enough for some broadcasters who were initially switching frequently between 4:3 and 16:9. The number of Aspect Ratio Converters required in a broadcast facility is also reduced, since the content is described correctly it does not need to be resized for broadcast on a platform that supports AFDs.

In 2012, a Technology & Engineering Emmy Award was awarded for the development and deployment of Active Format Description.[5]

  1. ^ Active Format Description (AFD): An Overview (PDF). Tandberg Television. 2008.
  2. ^ "EBU QC - Details of 0001W: Active Format Description (v5.1)". qc.ebu.io. Retrieved 2023-03-20.
  3. ^ "ST 2016-1:2009 - SMPTE Standard - Format for Active Format Description and Bar Data". ST 2016-1:2009: 1–21. December 2009. doi:10.5594/SMPTE.ST2016-1.2009. Archived from the original on June 16, 2018.
  4. ^ Daniel, Peter (2020). "Digital Television - AFD codes explained". Peter Daniel. Retrieved 2023-03-20.
  5. ^ Group, Andy Finney ATSF for the Digital TV. "DTG :: News :: DTG collects Emmy Award". www.dtg.org.uk. Archived from the original on 2012-03-26. Retrieved 2012-01-17. {{cite web}}: |last= has generic name (help)