Active fluid

An active fluid is a densely packed soft material whose constituent elements can self-propel.[1][2][3][4] Examples include dense suspensions of bacteria, microtubule networks or artificial swimmers.[2] These materials come under the broad category of active matter and differ significantly in properties when compared to passive fluids,[5] which can be described using Navier-Stokes equation. Even though systems describable as active fluids have been observed and investigated in different contexts for a long time, scientific interest in properties directly related to the activity has emerged only in the past two decades. These materials have been shown to exhibit a variety of different phases ranging from well ordered patterns to chaotic states (see below). Recent experimental investigations have suggested that the various dynamical phases exhibited by active fluids may have important technological applications.[6][7]

  1. ^ Morozov, Alexander (2017-03-24). "From chaos to order in active fluids". Science. 355 (6331): 1262–1263. Bibcode:2017Sci...355.1262M. doi:10.1126/science.aam8998. ISSN 0036-8075. PMID 28336624. S2CID 5238817.
  2. ^ a b Saintillan, David (2018). "Rheology of Active Fluids". Annual Review of Fluid Mechanics. 50 (1): 563–592. Bibcode:2018AnRFM..50..563S. doi:10.1146/annurev-fluid-010816-060049.
  3. ^ Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi (2013-07-19). "Hydrodynamics of soft active matter". Reviews of Modern Physics. 85 (3): 1143–1189. Bibcode:2013RvMP...85.1143M. doi:10.1103/RevModPhys.85.1143.
  4. ^ Rheology of complex fluids. Deshpande, Abhijit, Y. (Abhijit Yeshwa), Murali Krishnan, J., Sunil Kumar, P. B. New York: Springer. 2010. p. 193. ISBN 9781441964946. OCLC 676699967.{{cite book}}: CS1 maint: others (link)
  5. ^ Bratanov, Vasil; Jenko, Frank; Frey, Erwin (2015-12-08). "New class of turbulence in active fluids". Proceedings of the National Academy of Sciences. 112 (49): 15048–15053. Bibcode:2015PNAS..11215048B. doi:10.1073/pnas.1509304112. ISSN 0027-8424. PMC 4679023. PMID 26598708.
  6. ^ Yeomans, Julia M. (November 2014). "Playful topology". Nature Materials. 13 (11): 1004–1005. Bibcode:2014NatMa..13.1004Y. doi:10.1038/nmat4123. ISSN 1476-4660. PMID 25342530.
  7. ^ Yeomans, Julia M. (2017-03-01). "Nature's engines: active matter". Europhysics News. 48 (2): 21–25. Bibcode:2017ENews..48b..21Y. doi:10.1051/epn/2017204. ISSN 0531-7479.