Advanced composite materials (engineering)

In materials science, advanced composite materials (ACMs) are materials that are generally characterized by unusually high strength fibres with unusually high stiffness, or modulus of elasticity characteristics, compared to other materials, while bound together by weaker matrices. These are termed "advanced composite materials" in comparison to the composite materials commonly in use such as reinforced concrete, or even concrete itself. The high strength fibers are also low density while occupying a large fraction of the volume.

Advanced composites exhibit desirable physical and chemical properties that include light weight coupled with high stiffness (elasticity), and strength along the direction of the reinforcing fiber, dimensional stability, temperature and chemical resistance, flex performance, and relatively easy processing. Advanced composites are replacing metal components in many uses, particularly in the aerospace industry.

Composites are classified according to their matrix phase. These classifications are polymer matrix composites (PMCs), ceramic matrix composites (CMCs), and metal matrix composites (MMCs). Also, materials within these categories are often called "advanced" if they combine the properties of high (axial, longitudinal) strength values and high (axial, longitudinal) stiffness values, with low weight, corrosion resistance, and in some cases special electrical properties.

Advanced composite materials have broad, proven applications, in the aircraft, aerospace, and sports equipment sectors. Even more specifically ACMs are very attractive for aircraft and aerospace structural parts. ACMs have been developing for NASA's Advanced Space Transportation Program, armor protection for Army aviation and the Federal Aviation Administration of the USA, and high-temperature shafting for the Comanche helicopter. Additionally, ACMs have a decades long history in military and government aerospace industries. However, much of the technology is new and not presented formally in secondary or undergraduate education, and the technology of advanced composites manufacture is continually evolving.[1][2][3]

  1. ^ Pilato, L.; Michno, Michael J. (January 1994). Advanced composite materials (Chap 1 Introduction, and Chapter 2 "Matrix Resins"). Springer-Verlag New York. ISBN 978-3-540-57563-4.
  2. ^ OSHA (May 4, 2009). "Polymer Matrix Materials: Advanced Composites". U.S. Department of Labor. Archived from the original on 28 May 2010. Retrieved 2010-06-05. Public domain content from a U.S. government department. Materials created by the federal government Archived 2015-12-07 at the Wayback Machine are generally part of the public domain and may be used, reproduced and distributed without permission.
  3. ^ ACG (2006). "Introduction to Advanced Composites and Prepreg Technology" (PDF). Advanced Composites Group. Archived from the original (free PDF download) on 2022-06-16. Retrieved 2010-06-05.