Alf Adams

Alf Adams
Alfred Rodney Adams
Born (1939-11-11) 11 November 1939 (age 85)[3]
Alma materUniversity of Leicester (BSc, PhD, DSc)
Known forStrained quantum-well lasers
AwardsFRS (1996)[1]
Scientific career
Institutions
ThesisThe electrical and optical properties of ortho-rhombic sulphur crystals (1964)
Doctoral advisorWalter Eric Spear[2]
Websitesurrey.ac.uk/physics/people/alf_adams

Alfred ("Alf") Rodney Adams FRS (born 1939[3][4]) is a British physicist who invented the strained-layer quantum-well laser.[5] Most modern homes will have several of these devices in their homes in all types of electronic equipment.[6][7][8]

He served as a Distinguished Professor of Physics at the University of Surrey, where he headed the Optoelectronic Materials and Devices Research Group. He is now retired and holds the position of emeritus professor. He was awarded the Duddell Medal and Prize in 1995, and elected as a Fellow of the Royal Society in 1996. In 2014 he was awarded the Rank Prize in Optoelectronics for his pioneering work on strained-layer laser structures.

  1. ^ Cite error: The named reference royal was invoked but never defined (see the help page).
  2. ^ Cite error: The named reference BBC R4 was invoked but never defined (see the help page).
  3. ^ a b "ADAMS, Prof. Alfred Rodney". Who's Who 2014, A & C Black, an imprint of Bloomsbury Publishing plc, 2014; online edn, Oxford University Press.(subscription required)
  4. ^ Cyprus University of Technology[permanent dead link], advertising a lecture to be given by Adams on 4 February 2011. Contains further biographical details.
  5. ^ "A catalyst to our digital world: strained quantum well lasers—Full Case Study". SET squared. Universities of Bath, Bristol, Exetor, Southampton & Surray. Archived from the original on 3 April 2015. Retrieved 2 April 2015.
  6. ^ O'Reilly, E. P.; Adams, A. R. (1994). "Band-structure engineering in strained semiconductor lasers". IEEE Journal of Quantum Electronics. 30 (2): 366. Bibcode:1994IJQE...30..366O. doi:10.1109/3.283784.
  7. ^ Adams, A. R.; Asada, M.; Suematsu, Y.; Arai, S. (1980). "The Temperature Dependence of the Efficiency and Threshold Current of In1-xGaxAsyP1-y Lasers Related to Intervalence Band Absorption". Japanese Journal of Applied Physics. 19 (10): L621. Bibcode:1980JaJAP..19L.621A. doi:10.1143/JJAP.19.L621. S2CID 93124735.
  8. ^ Fehse, R.; Tomic, S.; Adams, A. R.; Sweeney, S. J.; O'Reilly, E. P.; Andreev, A.; Riechert, H. (2002). "A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers". IEEE Journal of Selected Topics in Quantum Electronics. 8 (4): 801. Bibcode:2002IJSTQ...8..801F. doi:10.1109/JSTQE.2002.801684.