Names | |
---|---|
Preferred IUPAC name
3-Iodoprop-1-ene | |
Other names
Allyl iodide
3-Iodopropene 3-Iodopropylene 3-Iodo-1-propene Iodoallylene 2-Propenyl iodide | |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.008.302 |
EC Number |
|
PubChem CID
|
|
UNII | |
UN number | 1723 |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C3H5I | |
Molar mass | 167.977 g·mol−1 |
Appearance | Pale yellow liquid |
Density | 1.837 g/cm3 |
Melting point | −99 °C (−146 °F; 174 K) |
Boiling point | 101 to 103 °C (214 to 217 °F; 374 to 376 K) |
Hazards | |
GHS labelling: | |
Danger | |
H225, H314 | |
P210, P233, P240, P241, P242, P243, P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P370+P378, P403+P235, P405, P501 | |
Flash point | 18 °C (64 °F; 291 K) |
Safety data sheet (SDS) | MSDS at Sigma Aldrich |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Allyl iodide (3-iodopropene) is an organic halide used in synthesis of other organic compounds such as N-alkyl-2-pyrrolidones,[1][failed verification] sorbic acid esters,[1] 5,5-disubstituted barbituric acids,[2][failed verification] and organometallic catalysts.[3][failed verification] Allyl iodide can be synthesized from allyl alcohol and methyl iodide on triphenyl phosphite,[4] Finkelstein reaction on allyl halides,[5] or by the action of elemental phosphorus and iodine on glycerol.[6][7] Allyl iodide dissolved in hexane can be stored for up to three months in a dark freezer at −5 °C (23 °F) before decomposition into free iodine becomes apparent.[8]
When unsaturated amines are carbonylated in the presence of Co2(CO)8, N-alkyl pyrrolidinones are obtained. Carbonylation of allyl halides in the presence of primary amines and a rhodium compound affords the same products....If allyl derivatives are carbonylated in the presence of acetylene by means of Ni(CO)4 and water or methanol at 20 °C, the acetylene adds onto the allyl halide and 2-cis-5-dienoic acids or esters or sorbic acid esters are obtained.
Disubstitution of barbituric acids at the 5-position is only possible with highly reactive halides, such as allyl halides.
Halogen-containing allyl complexes can often be prepared simply from reactions of allyl halides with metal compounds.