Ambrosia beetle

Ambrosia beetles are beetles of the weevil subfamilies Scolytinae and Platypodinae (Coleoptera, Curculionidae), which live in nutritional symbiosis with ambrosia fungi. The beetles excavate tunnels in dead or stressed trees into which they introduce fungal gardens, their sole source of nutrition. After landing on a suitable tree, an ambrosia beetle excavates a tunnel in which it releases its fungal symbiont. The fungus penetrates the plant's xylem tissue, extracts nutrients from it, and concentrates the nutrients on and near the surface of the beetle gallery. Ambrosia fungi are typically poor wood degraders, and instead utilize less demanding nutrients.[1] Symbiotic fungi produce and detoxify ethanol, which is an attractant for ambrosia beetles and likely prevents growth of antagonistic pathogens and selects for other beneficial symbionts.[2] The majority of ambrosia beetles colonize xylem (sapwood and/or heartwood) of recently dead trees, but some colonize stressed trees that are still alive, and a few species attack healthy trees.[3] Species differ in their preference for different parts of trees, different stages of deterioration, and in the shape of their tunnels ("galleries"). However, the majority of ambrosia beetles are not specialized to any taxonomic group of hosts, unlike most phytophagous organisms including the closely related bark beetles. One species of ambrosia beetle, Austroplatypus incompertus exhibits eusociality, one of the few organisms outside of Hymenoptera and Isoptera to do so.

  1. ^ Kasson, Matthew T.; Wickert, Kristen L.; Stauder, Cameron M.; Macias, Angie M.; Berger, Matthew C.; Simmons, D. Rabern; Short, Dylan P. G.; DeVallance, David B.; Hulcr, Jiri (October 2016). "Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles". Fungal Ecology. 23: 86–96. doi:10.1016/j.funeco.2016.07.002.
  2. ^ Ranger, Christopher M.; Biedermann, Peter H. W.; Phuntumart, Vipaporn; Beligala, Gayathri U.; Ghosh, Satyaki; Palmquist, Debra E.; Mueller, Robert; Barnett, Jenny; Schultz, Peter B.; Reding, Michael E.; Benz, J. Philipp (24 April 2018). "Symbiont selection via alcohol benefits fungus farming by ambrosia beetles". Proceedings of the National Academy of Sciences. 115 (17): 4447–4452. Bibcode:2018PNAS..115.4447R. doi:10.1073/pnas.1716852115. PMC 5924889. PMID 29632193.
  3. ^ Hulcr, Jiri; Stelinski, Lukasz L. (31 January 2017). "The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management". Annual Review of Entomology. 62: 285–303. doi:10.1146/annurev-ento-031616-035105. PMID 27860522.