Aminopeptidase

Crystal structure of the open state of human endoplasmic reticulum aminopeptidase 1 ERAP1[1]
Identifiers
SymbolPeptidase_M1
PfamPF01433
MEROPSM1
OPM superfamily227
OPM protein3mdj
CDDcd09595
Membranome534
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Aminopeptidases are enzymes that catalyze the cleavage of amino acids from the N-terminus (beginning), of proteins or peptides. They are found in many organisms; in the cell, they are found in many organelles, in the cytosol (internal cellular fluid), and as membrane proteins. Aminopeptidases are used in essential cellular functions, and are often zinc metalloenzymes, containing a zinc cofactor.[2]

Aminopeptidases occur in both water-soluble and membrane-bound forms and can be found both in various cellular compartments and in the extracellular environment (outside of cells).[3] Their broad substrate specificity, their ability to strongly bind to their targets, allows them to remove beginning N-terminal amino acids from almost all unsubstituted oligopeptides.[4] For instance, Aminopeptidase N (AP-N) is particularly abundant in the brush border membranes of the kidney, the small intestine, and the placenta, and is also found in the liver.[4] AP-N is involved in the final digestion of peptides generated from the hydrolysis (cleaving) of proteins by gastric and pancreatic proteases.[5]

Some aminopeptidases are monomeric, and others are found as assemblies of relatively high mass (50 kDa) subunits. cDNA sequences are available for several aminopeptidases and a crystal structure of the open state of human endoplasmic reticulum aminopeptidase 1 is available.[1]

  1. ^ a b PDB: 3QNF​: Kochan G, Krojer T, Harvey D, Fischer R, Chen L, Vollmar M, von Delft F, Kavanagh KL, Brown MA, Bowness P, Wordsworth P, Kessler BM, Oppermann U (May 2011). "Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming". Proceedings of the National Academy of Sciences of the United States of America. 108 (19): 7745–50. Bibcode:2011PNAS..108.7745K. doi:10.1073/PNAS.1101262108. PMC 3093473. PMID 21508329.
  2. ^ Taylor, A (February 1993). "Aminopeptidases: structure and function". FASEB Journal. 7 (2): 290–8. doi:10.1096/fasebj.7.2.8440407. PMID 8440407. S2CID 23354720.
  3. ^ Bradshaw, R.A. (2013), "Aminopeptidases", Encyclopedia of Biological Chemistry, Elsevier, pp. 97–99, doi:10.1016/b978-0-12-378630-2.00002-5, ISBN 978-0-12-378631-9
  4. ^ a b Turner, Anthony J. (2013), "Aminopeptidase N", Handbook of Proteolytic Enzymes, Elsevier, pp. 397–403, doi:10.1016/b978-0-12-382219-2.00079-x, ISBN 978-0-12-382219-2
  5. ^ Sanz, Yolanda (2007), "Aminopeptidases", Industrial Enzymes, Dordrecht: Springer Netherlands, pp. 243–260, doi:10.1007/1-4020-5377-0_15, ISBN 978-1-4020-5376-4