An anaerobic lagoon or manure lagoon is a man-made outdoor earthen basin filled with animal waste that undergoes anaerobic respiration as part of a system designed to manage and treat refuse created by concentrated animal feeding operations (CAFOs). Anaerobic lagoons are created from a manure slurry, which is washed out from underneath the animal pens and then piped into the lagoon. Sometimes the slurry is placed in an intermediate holding tank under or next to the barns before it is deposited in a lagoon. Once in the lagoon, the manure settles into two layers: a solid or sludge layer and a liquid layer. The manure then undergoes the process of anaerobic respiration, whereby the volatile organic compounds are converted into carbon dioxide and methane. Anaerobic lagoons are usually used to pretreat high strength industrial wastewaters and municipal wastewaters. This allows for preliminary sedimentation of suspended solids as a pretreatment process.[1]
Anaerobic lagoons have been shown to harbor and emit substances which can cause adverse environmental and health effects. These substances are emitted through two main pathways: gas emissions and lagoon overflow. Gas emissions are continuous (though the amount may vary based on the season) and are a product of the manure slurry. The most prevalent gasses emitted by the lagoon are: ammonia, hydrogen sulfide, methane, and carbon dioxide. Lagoon overflow is caused by faulty lagoons, such as breaches or improper construction, or adverse weather conditions, such as increased rainfall or strong winds. These overflows release harmful substances into the surrounding land and water such as: antibiotics, estrogens, bacteria, pesticides, heavy metals, and protozoa.
In the U.S., the Environmental Protection Agency (EPA) has responded to environmental and health concerns by strengthening regulation of CAFOs under the Clean Water Act. Some states have imposed their own regulations as well. Because of repeated overflows and resultant health concerns, North Carolina banned the construction of new anaerobic lagoons in 1999. There has also been a significant push for the research, development and implementation of environmentally sound technologies which would allow for safer containment and recycling of CAFO waste.