Analogue modelling (geology)

Pure shear sandbox model of thrust fault formation

Analogue modelling is a laboratory experimental method using uncomplicated physical models (such as a sandbox) with certain simple scales of time and length to model geological scenarios and simulate geodynamic evolutions.[1][2]

There are numerous limitations affecting the direct study of the Earth. Firstly, the timescales of geodynamic processes are exceptionally long (millions of years), and most of the processes started long before human records.[1][3] Secondly, the length scales of geodynamic processes are enormous (thousands of kilometres), and most of them happen at depth within the Earth.[1][3] Thus, scientists began making proportional small-scale simulations of features in the natural world to test geological ideas. Analogue models can directly show the whole structural pattern in 3D and cross-section. They are helpful in understanding the internal structures and the progressive development of Earth's deforming regions.[1]

Analogue modelling has been widely used for geodynamic analysis and to illustrate the development of different geological phenomena. Models can explore small-scale processes, such as folding and faulting, or large-scale processes, such as tectonic movement and interior Earth structures.[1][4]

  1. ^ a b c d e Schellart, Wouter P.; Strak, Vincent (2016). "A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments". Journal of Geodynamics. 100: 7–32. Bibcode:2016JGeo..100....7S. doi:10.1016/j.jog.2016.03.009. ISSN 0264-3707.
  2. ^ Ranalli, Giorgio (2001). "Experimental tectonics: from Sir James Hall to the present". Journal of Geodynamics. 32 (1–2): 65–76. Bibcode:2001JGeo...32...65R. doi:10.1016/s0264-3707(01)00023-0. ISSN 0264-3707.
  3. ^ a b Schreurs, Guido; Buiter, Susanne J. H. (Susanne Janita Henriët) (2006). Analogue and numerical modelling of crustal-scale processes. Geological Society. ISBN 978-1862391918. OCLC 191801955.
  4. ^ Strak, Vincent; Schellart, Wouter P. (2016). "Introduction to the special issue celebrating 200 years of geodynamic modelling". Journal of Geodynamics. 100: 1–6. Bibcode:2016JGeo..100....1S. doi:10.1016/j.jog.2016.08.003. ISSN 0264-3707.