Anatexis

Anatexis (via Latin from Greek roots meaning "to melt down") is the partial melting of rocks.[1] Traditionally, anatexis is used specifically to discuss the partial melting of crustal rocks, while the generic term "partial melting" refers to the partial melting of all rocks, in both the crust and mantle.[citation needed]

Anatexis can occur in a variety of different settings, from zones of continental collision to mid-ocean ridges.[2] It is believed that anatexis is the process largely responsible for the formation of migmatites.[1] Furthermore, scientists have recently discovered that partial melting plays an increasingly important role in active crustal processes, including the advancement of active deformation and the emplacement of crustal granites.[3] As a result, active feedback between crustal shearing, melting, and granite emplacement[3] has become largely accepted in the place of large scale, unreasonable models involving fractional melting of the mantle into granitic batholiths and plutons.[4] Evidence for this can be seen in the physical, mineralogical, and isotopic signatures of countless granites.[5]

  1. ^ a b Ashworth, J. R., ed. (1985). Migmatites. doi:10.1007/978-1-4613-2347-1. ISBN 978-1-4612-9438-2.
  2. ^ Johannes, Wilhelm, 1936- (1996). Petrogenesis and experimental petrology of granitic rocks. Springer. ISBN 3540604162. OCLC 33899456.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  3. ^ a b Brown, Michael; Solar, Gary S. (February 1998). "Shear-zone systems and melts: feedback relations and self-organization in orogenic belts". Journal of Structural Geology. 20 (2–3): 211–227. Bibcode:1998JSG....20..211B. doi:10.1016/s0191-8141(97)00068-0. ISSN 0191-8141.
  4. ^ Petford, N.; Cruden, A. R.; McCaffrey, K. J. W.; Vigneresse, J.-L. (December 2000). "Granite magma formation, transport and emplacement in the Earth's crust". Nature. 408 (6813): 669–673. Bibcode:2000Natur.408..669P. doi:10.1038/35047000. ISSN 0028-0836. PMID 11130061. S2CID 4404285.
  5. ^ Brown, Michael; Averkin, Yuri A.; McLellan, Eileen L.; Sawyer, Edward W. (1995-08-10). "Melt segregation in migmatites". Journal of Geophysical Research: Solid Earth. 100 (B8): 15655–15679. Bibcode:1995JGR...10015655B. doi:10.1029/95JB00517.