Angular frequency | |
---|---|
Other names | angular speed, angular rate |
Common symbols | ω |
SI unit | radian per second (rad/s) |
Other units | degrees per second (°/s) |
In SI base units | s−1 |
Derivations from other quantities | ω=2π rad ⋅ ν, ω=dθ/dt |
Dimension |
In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves). Angular frequency (or angular speed) is the magnitude of the pseudovector quantity angular velocity.[1]
Angular frequency can be obtained multiplying rotational frequency, ν (or ordinary frequency, f) by a full turn (2π radians): ω = 2π rad⋅ν. It can also be formulated as ω = dθ/dt, the instantaneous rate of change of the angular displacement, θ, with respect to time, t.[2][3]
angular frequency.