Quantum field theory |
---|
History |
In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory.[1][2] In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly[3] in turbulence: time-reversibility remains broken (and energy dissipation rate finite) at the limit of vanishing viscosity.
In quantum theory, the first anomaly discovered was the Adler–Bell–Jackiw anomaly, wherein the axial vector current is conserved as a classical symmetry of electrodynamics, but is broken by the quantized theory. The relationship of this anomaly to the Atiyah–Singer index theorem was one of the celebrated achievements of the theory. Technically, an anomalous symmetry in a quantum theory is a symmetry of the action, but not of the measure, and so not of the partition function as a whole.