The Apache Point Observatory Lunar Laser-ranging Operation, or APOLLO,[1] is a project at the Apache Point Observatory in New Mexico.[2] It is an extension and advancement of previous Lunar Laser Ranging experiments, which use retroreflectors on the Moon to track changes in lunar orbital distance and motion.
Using telescopes on Earth, the reflectors on the Moon, and accurate timing of laser pulses, scientists were able to measure and predict the orbit of the Moon to a precision of a few centimeters by the early 2000s. This precision provides the best known test of many aspects of our theories of gravity. APOLLO improves this precision even further, measuring the distance between the Moon and Earth to within a few millimeters. Using this information, scientists will be able to further test various aspects of gravity, such as: determining whether the Earth and the Moon react the same to gravity despite their different compositions, investigating the predictions of Einstein with respect to the energy content of the Earth and the Moon and how they react to gravity, and evaluating whether general relativity correctly predicts the motion of the Moon.
The APOLLO collaboration built their apparatus on the 3.5 meter telescope at Apache Point in southern New Mexico. By using a large telescope at a site with good atmospheric seeing, the APOLLO collaboration gets much stronger reflections than any existing facilities. APOLLO records approximately one returned laser photon per pulse, as opposed to the roughly 0.01 photon-per-pulse average experienced by previous LLR facilities. The stronger return signal from APOLLO translates to much more accurate measurements.
Matera
was invoked but never defined (see the help page).