Aspartate carbamoyltransferase

Aspartate carbamoyltransferase
Escherichia coli aspartate carbamoyltransferase heterododecamer with catalytic subunits coloured red and blue, and regulatory subunits in orange. PDB: 4FYY
Identifiers
EC no.2.1.3.2
CAS no.9012-49-1
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
Human carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase
Identifiers
SymbolCAD
NCBI gene790
HGNC1424
OMIM114010
RefSeqNM_004341
UniProtP27708
Other data
EC number2.1.3.2
LocusChr. 2 p22-p21
Search for
StructuresSwiss-model
DomainsInterPro

Aspartate carbamoyltransferase (also known as aspartate transcarbamoylase or ATCase) catalyzes the first step in the pyrimidine biosynthetic pathway (EC 2.1.3.2).[1]

In E. coli, the enzyme is a multi-subunit protein complex composed of 12 subunits (300 kDa in total).[2] The composition of the subunits is C6R6, forming 2 trimers of catalytic subunits (34 kDa) and 3 dimers of regulatory subunits (17 kDa). The particular arrangement of catalytic and regulatory subunits in this enzyme affords the complex with strongly allosteric behaviour with respect to its substrates.[3] The enzyme is an archetypal example of allosteric modulation of fine control of metabolic enzyme reactions.

ATCase does not follow Michaelis–Menten kinetics. Instead, it lies between its low-activity, low-affinity "tense" and its high-activity, high-affinity "relaxed" states.[4] The binding of substrate to the catalytic subunits results in an equilibrium shift towards the R state, whereas binding of CTP to the regulatory subunits results in an equilibrium shift towards the T state. Binding of ATP to the regulatory subunits results in an equilibrium shift towards the R state.[5]

  1. ^ Simmer JP, Kelly RE, Rinker AG, Zimmermann BH, Scully JL, Kim H, Evans DR (Jan 1990). "Mammalian dihydroorotase: nucleotide sequence, peptide sequences, and evolution of the dihydroorotase domain of the multifunctional protein CAD". Proceedings of the National Academy of Sciences of the United States of America. 87 (1): 174–8. Bibcode:1990PNAS...87..174S. doi:10.1073/pnas.87.1.174. PMC 53223. PMID 1967494.
  2. ^ Macol CP, Tsuruta H, Stec B, Kantrowitz ER (May 2001). "Direct structural evidence for a concerted allosteric transition in Escherichia coli aspartate transcarbamoylase". Nature Structural Biology. 8 (5): 423–6. doi:10.1038/87582. PMID 11323717. S2CID 35403933.
  3. ^ Helmstaedt K, Krappmann S, Braus GH (Sep 2001). "Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase". Microbiology and Molecular Biology Reviews. 65 (3): 404–21, table of contents. doi:10.1128/MMBR.65.3.404-421.2001. PMC 99034. PMID 11528003.
  4. ^ Biochemistry, by Campbell and Farrel, Chapter 7
  5. ^ Alberts, Bruce. Molecular biology of the cell. ISBN 978-1-315-73536-8. OCLC 1082214404.