In mathematics, an automatic group is a finitely generated group equipped with several finite-state automata. These automata represent the Cayley graph of the group. That is, they can tell if a given word representation of a group element is in a "canonical form" and can tell if two elements given in canonical words differ by a generator.[1]
More precisely, let G be a group and A be a finite set of generators. Then an automatic structure of G with respect to A is a set of finite-state automata:[2]
- the word-acceptor, which accepts for every element of G at least one word in representing it;
- multipliers, one for each , which accept a pair (w1, w2), for words wi accepted by the word-acceptor, precisely when in G.
The property of being automatic does not depend on the set of generators.[3]
- ^ Epstein, David B. A.; Cannon, James W.; Holt, Derek F.; Levy, Silvio V. F.; Paterson, Michael S.; Thurston, William P. (1992), Word Processing in Groups, Boston, MA: Jones and Bartlett Publishers, ISBN 0-86720-244-0.
- ^ Epstein et al. (1992), Section 2.3, "Automatic Groups: Definition", pp. 45–51.
- ^ Epstein et al. (1992), Section 2.4, "Invariance under Change of Generators", pp. 52–55.