An axial engine (sometimes known as a barrel engine or Z-crank engine) is a type of reciprocating engine with pistons arranged around an output shaft with their axes parallel to the shaft. Barrel refers to the cylindrical shape of the cylinder group (result of the pistons being spaced evenly around the central crankshaft and aligned parallel to the crankshaft axis) whilst the Z-crank alludes to the shape of the crankshaft.
As a cam engine, an axial engine can use either a swashplate or a wobble plate to translate the piston motion to rotation. A wobble plate is similar to a swashplate, in that the pistons press down on the plate in sequence, imparting a lateral moment that is translated into rotary motion. This motion can be simulated by placing a compact disc on a ball bearing at its centre and pressing down at progressive places around its circumference. The difference is that while a wobble plate nutates, a swash-plate rotates.[1] An alternative design, the Rand cam engine, replaces the plate with one or more sinusoidal cam surfaces. Vanes mounted parallel to a shaft mounted inside a cylindrical 'barrel' that are free to slide up and down ride the sinuous cam, the segments formed by rotor, stator walls and vanes constituting combustion chambers. In effect these spaces serving the same purpose as the cylinders of an axial engine, and the sinuous cam surface acts as the face of the pistons. In other respect this form follows the normal cycles of internal combustion but with burning gas directly imparting a force on the cam surface, translated into a rotational force by timing one or more detonations. This design eliminates the multiple reciprocal pistons, ball joints and swash plate of a conventional 'barrel' engine but crucially depends on effective sealing provided by sliding and rotating surfaces.[2]
The key advantage of the axial design is that the cylinders are arranged in parallel around the output/crank shaft in contrast to radial and inline engines, both types having cylinders at right angles to the shaft. As a result, it is a very compact, cylindrical engine, allowing variation in compression ratio of the engine while running. In a swashplate engine the piston rods stay parallel with the shaft, and piston side-forces that cause excessive wear can be eliminated almost completely. The small-end bearing of a traditional connecting rod, one of the most problematic bearings in a traditional engine, is eliminated.
While axial engines are challenging to make practicable at typical engine operating speeds some cam engines have been tested that offer extremely compact size (approximating to a six-inch (150mm) cube) yet producing approximately forty horsepower at c 7000 rpm, useful for light aerial applications. The attraction of lightweight and mechanically simple (far fewer major moving parts, in the form of a rotor plus twelve axial vanes forming twenty-four combustion chambers) engines, even with a finite working life, have obvious application for small unmanned aircraft.