BKS theory

In the history of quantum mechanics, the Bohr–Kramers–Slater (BKS) theory was perhaps the final attempt at understanding the interaction of matter and electromagnetic radiation on the basis of the so-called old quantum theory, in which quantum phenomena are treated by imposing quantum restrictions on classically describable behaviour.[1][2][3][4] It was advanced in 1924, and sticks to a classical wave description of the electromagnetic field. It was perhaps more a research program than a full physical theory, the ideas that are developed not being worked out in a quantitative way.[5]: 236  The purpose of BKS theory was to disprove Einstein's hypothesis of the light quantum.[6]

One aspect, the idea of modelling atomic behaviour under incident electromagnetic radiation using "virtual oscillators" at the absorption and emission frequencies, rather than the (different) apparent frequencies of the Bohr orbits, significantly led Max Born, Werner Heisenberg and Hendrik Kramers to explore mathematics that strongly inspired the subsequent development of matrix mechanics, the first form of modern quantum mechanics. The provocativeness of the theory also generated great discussion and renewed attention to the difficulties in the foundations of the old quantum theory.[7] However, physically the most provocative element of the theory, that momentum and energy would not necessarily be conserved in each interaction but only overall, statistically, was soon shown to be in conflict with experiment.

Walther Bothe won the Nobel Prize in Physics in 1954 for the Bothe–Geiger coincidence experiment that experimentally disproved BKS theory.[8][9]

  1. ^ Bohr, Niels (1984). The emergence of quantum mechanics (mainly 1924-1926). Niels Bohr Collected Works. Vol. 5. Amsterdam: North-Holland. pp. 3–216. ISBN 978-0-444-86501-4. OCLC 225659653.
  2. ^ J. Mehra and H. Rechenberg, The historical development of quantum theory, Springer-Verlag, New York, etc., 1982, Vol. 1, Part 2, pp. 532-554.
  3. ^ Bohr, N.; Kramers, H.A.; Slater, J.C. (1924). "LXXVI. The quantum theory of radiation". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 47 (281). Informa UK Limited: 785–802. doi:10.1080/14786442408565262. ISSN 1941-5982.
  4. ^ Bohr, N.; Kramers, H. A.; Slater, J. C. (1924). "Über die Quantentheorie der Strahlung". Zeitschrift für Physik (in German). 24 (1). Springer Science and Business Media LLC: 69–87. Bibcode:1924ZPhy...24...69B. doi:10.1007/bf01327235. ISSN 1434-6001. S2CID 120226061.
  5. ^ Pais, Abraham (1991). Niels Bohr's Times: In Physics, Philosophy, and Polity. Oxford University Press. ISBN 0-19-852049-2.
  6. ^ ”How ideas became knowledge: The light-quantum hypothesis 1905–1935” Stephen G. Brush, Historical Studies in the Physical and Biological Sciences, Vol. 37, No. 2 (March 2007), pp. 205-246 (42 pages) Published by: University of California Press, P. 234 “Two physicists who clearly did not accept that claim were Neils Bohr and H. A. Kramers. They were so desperate to rescue the wave theory of light that they were willing to give up the absolute validity of the laws of conservation of energy and momentum in interactions between x-rays and electrons.”
  7. ^ Max Jammer, Conceptual Development of Quantum Mechanics, 2e, 1989, p.188
  8. ^ "The Nobel Prize in Physics 1954". NobelPrize.org. Retrieved 2024-02-19.
  9. ^ Maier, Elke (2011). "Flashback: Particle Billiards, Captured on Film". MaxPlanckResearch. 3: 92–93.