BRB-seq

Schematic overview of the MERCURIUS BRB-seq workflow where up to 384 samples can be barcoded and multiplexed per kit.

Bulk RNA barcoding and sequencing (BRB-seq) is an ultra-high-throughput bulk 3' mRNA-seq technology that uses early-stage sample barcoding and unique molecular identifiers (UMIs) to allow the pooling of up to 384 samples in one tube early in the sequencing library preparation workflow. The transcriptomic technology is compatible with both Illumina and MGI short-read sequencing instruments.[1]

In standard RNA-seq, a sequencing library must be prepared for each RNA sample individually.[2] In contrast, in BRB-seq, all samples are pooled early in the workflow for simultaneous processing to reduce the cost and hands-on time associated with the library preparation stage[1]

As BRB-seq is a 3' mRNA-seq technique, short reads are generated only for the 3' region of polyadenylated mRNA molecules instead of the full length of transcripts like in standard RNA-seq. This means that BRB-seq requires a far lower sequencing depth per sample to generate genome-wide transcriptomic data that allows users to detect similar numbers of expressed genes and differentially expressed genes as the standard Illumina TruSeq approach but at a cost up to 25 times cheaper or similar to profiling four genes using RT-qPCR.[1] BRB-seq also has a greater tolerance for lower RNA quality (RIN <6) where transcripts are degraded because only the 3' region is required in library preparation[1]

  1. ^ a b c d Alpern, Daniel; Gardeux, Vincent; Russeil, Julie; Mangeat, Bastien; Meireles-Filho, Antonio C. A.; Breysse, Romane; Hacker, David; Deplancke, Bart (2019-04-19). "BRB-seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing". Genome Biology. 20 (1): 71. doi:10.1186/s13059-019-1671-x. ISSN 1474-760X. PMC 6474054. PMID 30999927.
  2. ^ Stark, Rory; Grzelak, Marta; Hadfield, James (2019-07-24). "RNA sequencing: the teenage years". Nature Reviews Genetics. 20 (11): 631–656. doi:10.1038/s41576-019-0150-2. ISSN 1471-0056. PMID 31341269.