In mathematics, the Barnes G-function G(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes.[1] It can be written in terms of the double gamma function.
Formally, the Barnes G-function is defined in the following Weierstrass product form:
where is the Euler–Mascheroni constant, exp(x) = ex is the exponential function, and Π denotes multiplication (capital pi notation).
The integral representation, which may be deduced from the relation to the double gamma function, is
As an entire function, G is of order two, and of infinite type. This can be deduced from the asymptotic expansion given below.
- ^ E. W. Barnes, "The theory of the G-function", Quarterly Journ. Pure and Appl. Math. 31 (1900), 264–314.