Battery energy storage system

Tehachapi Energy Storage Project, Tehachapi, California

A battery energy storage system (BESS) or battery storage power station is a type of energy storage technology that uses a group of batteries to store electrical energy. Battery storage is the fastest responding dispatchable source of power on electric grids, and it is used to stabilise those grids, as battery storage can transition from standby to full power in under a second to deal with grid contingencies.[1]

Battery energy storage systems are generally designed to be able to output at their full rated power for several hours. Battery storage can be used for short-term peak power[2] and ancillary services, such as providing operating reserve and frequency control to minimize the chance of power outages. They are often installed at, or close to, other active or disused power stations and may share the same grid connection to reduce costs. Since battery storage plants require no deliveries of fuel, are compact compared to generating stations and have no chimneys or large cooling systems, they can be rapidly installed and placed if necessary within urban areas, close to customer load, or even inside customer premises.

As of 2021, the power and capacity of the largest individual battery storage system is an order of magnitude less than that of the largest pumped-storage power plants, the most common form of grid energy storage. For example, the Bath County Pumped Storage Station, the second largest in the world, can store 24 GWh of electricity and dispatch 3 GW while the first phase of Vistra Energy's Moss Landing Energy Storage Facility can store 1.2 GWh and dispatch 300 MW.[3] However, grid batteries do not have to be large, a large number of smaller ones (often as Hybrid power) can be widely deployed across a grid for greater redundancy and large overall capacity.

As of 2019, battery power storage is typically cheaper than open cycle gas turbine power for use up to two hours, and there was around 365 GWh of battery storage deployed worldwide, growing rapidly.[4] Levelized cost of storage (LCOS) has fallen rapidly, halving in two years to reach US$150 per MWh in 2020,[5][6][7] and further reduced to US$117 by 2023.[8]

  1. ^ Denholm, Paul; Mai, Trieu; Kenyon, Rick Wallace; Kroposki, Ben; O'Malley, Mark (2020). Inertia and the Power Grid: A Guide Without the Spin (PDF). National Renewable Energy Laboratory. Page 30
  2. ^ Spector, Julian (2019-07-01). "What Comes Next After Batteries Replace Gas Peakers?". www.greentechmedia.com. Retrieved 2019-07-03.
  3. ^ "'Manufacturer reveals involvement in world's biggest battery energy storage system so far'". Energy Storage News. 17 June 2021.
  4. ^ "Behind the numbers: The rapidly falling LCOE of battery storage". Energy Storage News. 6 May 2020.
  5. ^ "BloombergNEF: 'Already cheaper to install new-build battery storage than peaking plants'". Energy Storage News. 30 April 2020.
  6. ^ "Grid Energy Storage Technology Cost and Performance Assessment" (PDF). US Department of Energy. Retrieved 23 December 2021.
  7. ^ "Energy Storage Cost and Performance Database". US Department of Energy. Retrieved 23 December 2021.
  8. ^ "Annual Energy Outlook 2023 - U.S. Energy Information Administration (EIA)". www.eia.gov. Retrieved 2023-10-24.