This article includes a list of general references, but it lacks sufficient corresponding inline citations. (April 2016) |
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data.
The model has also promising application in the field of analytical marketing. In particular, it can be used in order to assess how much different marketing campaigns have contributed to the change in web search volumes, product sales, brand popularity and other relevant indicators. Difference-in-differences models[1] and interrupted time series designs[2] are alternatives to this approach. "In contrast to classical difference-in-differences schemes, state-space models make it possible to (i) infer the temporal evolution of attributable impact, (ii) incorporate empirical priors on the parameters in a fully Bayesian treatment, and (iii) flexibly accommodate multiple sources of variation, including the time-varying influence of contemporaneous covariates, i.e., synthetic controls."[1]
:0
was invoked but never defined (see the help page).